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Asymptotic Analysis of SDMA Systems with
Near-Orthogonal User Scheduling (NEOUS) under
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Abstract—In this paper, we focus on the asymptotic cross layer
analysis of multi-antenna systems with transmit MMSE (Tx-
MMSE) beamforming, near orthogonal scheduling and outdated
CSIT. To capture the effect of the potential packet outage,
we introduce the averagesystem goodput, which measures the
average b/s/Hz delivered to the mobiles successfully, as the system
performance objective. We derive closed-form expressionsfor the
optimal power and rate allocations as well as a low complexity
near orthogonal user scheduling (NEOUS) algorithm to solve the
cross-layer optimization problem. We derive the asymptotic order
of growth in system goodput for general CSIT error varianceσ2

and found that for sufficiently large nT (number of antennas at
the base station) andK (number of users) whereK = g−1(nT )
for some strictly increasing function g(x) = o(x), the the system
goodput grows in the order ofnT log[(1−σ2) log K] whenσ2 < 1.
This is the same order of growth as the optimal order of growth
in broadcast channels with perfect CSIT and hence, the NEOUS
is order-optimal. On the other hand, we need exponentially larger
K to compensate for the penalty in multiuser diversity gain due
to CSIT errors.

Index Terms—SDMA, Cross-Layer Analysis, Imperfect CSI

I. I NTRODUCTION

For multiuser multi-antenna systems, it is shown [1] that,
by selecting a set of users with the best channel condition
at each scheduling slot, the system spectral efficiency can be
substantially improved due to the spatial multiplexing gain
and multi-user selection diversity. The optimality of transmit
zero-forcing beamforming (Tx-ZFBF) (as a result of cross-
layer scheduling) has been shown asymptotically for large
number of users in [2]. However, in all these works, the system
performance is based onergodic capacityand the channel state
knowledge at the base station (CSIT) is assumed to be perfect.
However, in practice, the CSIT can never be perfect due to
either the CSIT estimation noise in Time Divison Duplexing
(TDD) systems or the outdatedness of CSIT due to duplexing
delay. When the CSIT is imperfect, there will be potential
packet transmission error (packet outage) when the scheduled
data rate exceeds the instantaneous mutual information. This
happens even if powerful error correction coding is applied
because with imperfect CSIT, the instantaneous mutual in-
formation is not known at the base station and appears as
a random variable. In order to capture the penalty of potential
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packet errors, we shall definesystem goodput, which measures
the average b/s/Hzsuccessfullydelivered to the mobiles, as our
performance measure.

The cross-layer design with outdated CSIT is a relatively
new topic. In [3], a multi-user downlink zero-forcing based
scheduling is analyzed using limited feedback. In [4], an
opportunistic scheduling approach is proposed with rate feed-
backs from the mobiles. In [5], precoding of MISO system is
studied under partial and analog feedbacks. Yet, in all these
cases, due to the perfect (but partial) feedback1 assumption,
packet error is not an issue as long as the error correction code
is sufficiently strong and hence, these works also considered
ergodic capacity as the performance objective. As far as we
are aware, the following are some open fundamental questions
remained to be answered.

• Due to the CSIT errors, there will always be mutual
interference between the spatial streams and it is not clear
whether spatial multiplexing will do any good especially
at high SNR.

• What is the asymptotic multi-user diversity gain for
SDMA system when we have CSIT errors?

• How sensitive would the multi-user diversity gain in
SDMA systems be with respect to the CSIT errors.

In this paper, we shall focus on the cross-layer design and
asymptotic analysis in SDMA system with imperfect CSIT.
We shall focus on transmit MMSE(Tx-MMSE) processing
at the base station. Tx-MMSE has been investigated in [6]
for multi-user systems. However, perfect CSIT is assumed
and no user selection and rate allocation is allowed. In this
paper, we shall formulate the cross-layer design with imperfect
CSIT as a mixed combinatorial and real optimization problem.
Using random matrix theory, we shall show that the condi-
tional packet outage probability converges (in probability) to
non-central chi-square cdf asnT increases and closed form
solutions for the rate and power adaptations (that maximize
the system goodput) can be obtained. We propose a low
complexity near orthogonal user scheduling(NEOUS) to
solve the combinatorial optimization. We derive the asymptotic
order of growth in system goodput for general CSIT errorσ2

and found that for sufficiently largenT andK = g−1(nT )
for some strictly increasing functiong(x) = o(x), the system
goodput grows in the order ofnT log[(1 − σ2) logK] when

1Partial feedback here refers to the limited feedback. Perfect feedback here
refers to the assumption that there is no feedback errors or feedback delay in
the limited feedback.
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σ2 < 1. This is the same order of growth as the optimal order
of growth in broadcast channels with perfect CSIT and hence,
the NEOUS isorder-optimal. However, we need exponentially
largerK to compensate for the penalty in multiuser diversity
gain due to CSIT errors.

The rest of the paper is organized as follows. In Section II,
we outline the system model and the Tx-MMSE processing. In
Section III, we definesystem goodputand formulate the cross
layer design as an optimization problem. In Section IV, we
shall give closed-form solution for rate and power adaptation
and the low-complexitynear orthogonal user scheduling. In
section V, we shall analyze the asymptotic system goodput
for large number of users and large number of antennas. In
Section VI, we conclude with a summary of results.

II. SYSTEM MODEL

In this paper, we shall adopt the following convention.X

denotes a matrix andx denotes a vector.X† denotes matrix
transpose andXH denotes matrix hermitian.

A. Channel Model and Outdated CSIT Model

We consider a downlink transmission in a multi-user system
with a base station havingnT transmit antennas andK mobile
terminals having one receive antenna. We are interested to
study the case whenK > nT so that cross layer scheduling be-
comes important. The channel fading between different users
and different antenna are modeled as independent identically
distributed (i.i.d.) complex Gaussian process with zero-mean
and unit variance. We consider slow fading channels where
the fading isquasi-staticwithin a scheduling time slot. The
signal received by a userk, yk, can be written as:

yk = hH
k x + zk, k = 1, ...,K (1)

wherex is the nT × 1-dimension transmit symbol from the
base station,hk is thenT ×1-dimension channel fading matrix
of the k-th user,zk is the additive white Gaussian noise with
zero-mean and unit variance.

We consider TDD systems where the CSIT is obtained by
channel reciprocity from estimation of uplink pilots. Consider
the case where the CSIT error is due to the estimation noise
on the uplink pilot, the MMSE estimator of the CSIT̂hk of
userk at the base station is given by[7], [8], [9]:

ĥk = hk + ∆hk, (2)

where∆hk =

√
Ep

1+Ep
z

pilot
k − 1

1+Ep
hk is thenT × 1 dimension

CSIT error (or MMSE error),Ep is the uplink pilot SNR,
z

pilot
k is the AWGN noise in the received samples of the

uplink pilots (zero-mean unit variance). As a result,∆hk is
zero-mean complex Gaussian distributed with covarianceσ2I

whereσ2 = 1
1+Ep

is the CSIT error variance2. Furthermore,

E [∆hH
k ĥk] = 0 due to the orthogonality principle of MMSE.

Hence,σ2 is a parameter which represents the CSIT quality.

2In fact, the same model in (2) can be used to describe the outdated CSIT
due to delayτ [10]. In that case, the error varianceσ2 = 1 − J2

0
(2πfdτ)

wherefd is the Doppler spread andJ0 is the zeroth-order Bessel function of
first kind.

When σ2 = 0 (or Ep → ∞), we have perfect CSIT. When
σ2 = 1 (or Ep → 0), we haveE [ĥH

k ĥ] = 0 and this is
equivalent to no CSIT.

In practice, a relatively strong downlink pilot channel is
available from the base station because the downlink pilot can
be shared among all theK users. Hence, the CSIR estimation
error is insignificant relative to that of the CSIT and for
simplicity, we shall assume the CSIR is known perfectly at
mobile terminals.

B. Multi-antenna Base Station Processing

Since there arenT spatial degrees of freedom in a base
station with nT transmit antennas, we consider fullspatial
division multiplexing(SDM) wherenT users are selected from
the set ofK users to transmit at each time slot. DefineA
to be the set of thenT selected users for transmissions.
For easy notation, we assumeA = {1, 2, .., nT} below
as illustrations. Each information streams is encoded and
modulated separately. The modulated symbols from thenT

streams are assigned with transmit power{p1, .., pnT
} and the

linear precoding weights{w1, ..,wnT
} wherepk ≥ 0 is the

average transmit power andwk is thenT × 1 complex linear
beamforming weight for thek-th user. As a result, the received
signal at thek-th mobile after linear pre-processing at the base
station is given by:

yk = hH
k

∑

i∈A

√
piwiui + zk (3)

whereui is the encoded information symbol for thei-th user.
Note that bothpi, wi and A are functions of CSIT̂h and
power allocation is subject to the average power constraint∑K

i=1 pi ≤ P0.

Transmit MMSE (Tx-MMSE) Processing: In this paper,
we shall focus onTransmit MMSEprocessing with imperfect
CSIT for more robust performance against the CSIT errors.
Let ψ = E [‖ĥk‖2] be the average norm of the CSIT. The Tx-
MMSE weights{wk : k ∈ A} are selected to minimize the
total normalized mean-square errorJ given by:

J(W) = tr

[
E [
(
y −

√
ψΛu

)(
y −

√
ψΛu

)H

|Ĥ]

]
(4)

where y = [y1, ..., ynT
]† and U = [u1, ..., unT

]† are the
nT × 1 vectors of received signals and encoded symbols for
the selected users,Λ is the nT × nT diagonal matrix of
the square-root of transmit powers

√
pk. Ĥ = [ĥ1...ĥnT

] is
the aggregate estimated CSIT matrix for all users. Hence,
the optimal MMSE weightswk can be obtained by standard
optimization technique by:

∂J/∂wk =


∑

j

ĥjĥ
H
j


wk −

√
ψĥk + λkwk = 0
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whereλk is a Lagrandge multiplier for the constraint‖wk‖2 =
1 and the MMSE weight is given by:

wk =
√
ψ


∑

j

ĥjĥ
H
j + λkI




−1

ĥk

=


∑

j∈A

ˆ̃
hj

ˆ̃
h

H

j + λkI




−1

ˆ̃
hk ∀k ∈ A (5)

where ˆ̃
hk = ĥ/

√
ψ is the normalized CSIT so that

E
[
‖ ˆ̃
hk‖2

]
= 1 and λk is the Lagrandge multiplier for

‖w‖2 = 1.
From Fig. 1, the adaptive parameters at the base station

include the power allocation{pk : k ∈ A}, the rate allocation
{rk : k ∈ A} and the user selectionA. We shall formulate
the cross-layer design as an optimization problem in the next
section.

III. PROBLEM FORMULATION

In this section, we shall first define an appropriate optimiza-
tion objective, namely thesystem goodput, that measures the
b/s/Hz successfully delivered to the mobiles. Afterwards,we
shall elaborate on the optimization problem formulation.

A. Instantaneous Mutual Information and System Goodput

With outdated CSIT, the Tx-MMSE processing cannot
completely eliminate multi-user interference and the received
signal atk-th user is given by:

yk =
√
pkh

H
k wkuk︸ ︷︷ ︸

Signal Term

+
∑

j 6=k,j∈A

√
pjh

H
k wjuj

︸ ︷︷ ︸
Multi-user Interference Termvk

+ zk︸︷︷︸
Noise

(6)
where hk is the actual CSI, andvk denotes the residual
multiuser interference after Tx-MMSE processing. Note that
the receiver at thek-th mobile has perfect CSIR,hk. However,
the base station only has knowledge of the imperfect CSIT,ĥk.

Given the CSIRhk at thek−th mobile, the instantaneous
mutual information can be expressed as:

Ck(hk,∆hk) = log2

(
1 +

pk|hH
k wk|2

1 +
∑

j 6=k,j∈A pj |ĥH
k wj |2

)
(7)

In order to capture the potential packet errors into the system
performance measure, we shall consider the system goodput
(b/s/Hz successfully delivered to the mobile stations) as our
performance measure instead of conventional ergodic capacity.
In general, packet error is contributed by two factors, namely
the channel noiseand thechannel outage. In the former case,
packet error is contributed by the effect of non-ideal channel
coding and finite block length of the channel codes. This
factor can be reduced by using a strong channel code and
longer block length. However, in the latter case, the effectis
systematic and cannot be eliminated by simply using a stronger
code or longer block length. This is because the instantaneous
mutual informationCk(hk) is unknown to the base station

and the packet will be corrupted whenever the scheduled data
rate rk exceedsCk(hk). In practice, for reasonable block
length (such as 8K byte) and strong coding (such as LDPC),
Shannon’s capacityCk can be approached to within 0.05 dB
for a target FER of10−3. Hence, for simplicity, we shall model
the packet error solely by the probability that the scheduled
data rate exceeding the instantaneous mutual information (i.e.
packet error due to the channel outage only).

We first define the instantaneous goodput of a packet
transmission for userk as

ρk = rk1(rk ≤ Ck) (8)

where1(.) is an indicator function which is 1 when the event
is true and 0 otherwise. Theaverage total goodputis defined
as the total average b/s/Hz successfully delivered to theK
mobiles (averaged over multiple time slots) and is given by:

Uthp(A,P ,R) = E [

K∑

k=1

ρk]

= E
Ĥ





K∑

k=1

rk Pr[rk ≤ Ck|Ĥ]︸ ︷︷ ︸
Conditional outage probabilityPout





(9)

whereR = {(r1, ..., rK)[Ĥ] ∈ ℜK
+ : ∀Ĥ ∈ CK×nT } is the

rate allocation policy (which is the set of ”actions” for all
possible CSIT realizations). Similarly,P = {(p1, .., pK)[Ĥ] ∈
ℜK

+ : ∀Ĥ ∈ CK×nT } is the power allocation policy andΩ =

{A[Ĥ] : ∀Ĥ ∈ CK×nT } is the user selection policy.

B. Cross-Layer Design Optimization

The cross-layer design is to select the optimal power, rate
and user selection policies to maximize the total average
system goodputUthp(Ω,R,P) at a target FER probabilityǫ.
This is summarized by the following.

Problem 1 (Cross-Layer Optimization Problem). The optimal
power allocation policyP , rate allocation policyR and user
selection policyΩ are given by:

(P∗,R∗,Ω∗) = arg max
P,R,Ω

Uthp(Ω,R,P)

such thatPout = Pr
[
rk > Ck|Ĥ

]
= ǫ.

From (9), Uthp(A,P ,R) =

E
Ĥ

{∑K
k=1 rk Pr[rk ≤ Ck|Ĥ]

}
and hence, optimization

w.r.t. policies (set of actions for all CSIT realizations) is
equivalent to optimization w.r.t. the actions for a given CSIT
realization. As a result, Problem 1 is equivalent to

(p∗, r∗,A∗) = arg max
p,r,A

K∑

k=1

rk Pr[rk ≤ Ck|Ĥ] (10)

such that Pout = Pr
[
rk > Ck|Ĥ

]
= ǫ where p =

{p1, ..., pK} and r = {r1, ..., rK}. Strictly speaking, the
variablesA and p are redundant becausepk = 0 → k /∈ A
and hence, the optimization problem can be formulated by
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optimizing w.r.t. p and r only. However, in this case, the
solution will be very complicated and no closed-form solution
is possible because the MMSE weights will be coupled with
the power action{bfp}. In order to obtain closed form
solutions, we introduce a redundant variableA so that the
problem is transformed into a mixed combinatorial and real
optimization. GivenA, the MMSE weights can be determined
and this allows closed-form solutions for the power and rate.
After solving for power and rate, we still have to optimize w.r.t.
A which involves combinatorial search. The solution will be
elaborated in the following section.

IV. SOLUTIONS OF THEOPTIMIZATION PROBLEM

The optimization in (10) is a mixed real (p, r) and combina-
torial (A) optimization. We shall solve it in two steps. In step
1, we fix a given user selectionA and obtain optimal power
and rate allocations for the givenA. In step 2, we shall perform
combinatorial search onA. For any given admitted user set
A, the Lagrangian function of the optimization problem 1 is
given by:

L({pk}, {rk};β, ξ, {κk}, {αk}) =
∑

k

rk Pr[rk ≤ Ck|Ĥ]

−β
(
Pr[rk ≤ Ck|Ĥ] − ǫ

)
− ξ

(
∑

k

pk − P0

)

−
∑

k

κkrk −
∑

k

αkpk (11)

whereβ, ξ, κk ≥ 0 andαk ≥ 0 are the Lagrangian multipliers
corresponding to the constraintsPout = ǫ,

∑
k pk = P0, rk ≥

0 andpk ≥ 0 respectively.

A. Conditional Packet Outage Probability

One obstacle in solving for{pk} and{rk} is that we need to
have closed form expression for the conditional outage prob-
ability Pout(rk, pk,A, Ĥ). The conditional outage probability

can be expressed asPout(rk, pk,A, Ĥ) = Pr

[
Sk < Λk/ψ|Ĥ

]

where Λk = (2rk − 1), and Sk is the normalized random
variable given by:

Sk = pk|h̃H
k wk|2 − Λk

∑

j 6=k

pj |h̃H
k wj |2 (12)

where h̃k = h/
√
ψ is the normalized CSI. Conditioned on

the CSIT Ĥ, the CSI h̃k is a Gaussian random vector with

mean ˜̂hk and covariance(σ2/ψ)I. Hence,Sk is a indefinite
quadratic form of Gaussian random variables. The cdf of
the indefinite quadratic form is very tedious and is virtually
impossible to optimize on the expression. Yet, using random
matrix theory, we show thatSk converges to non-central chi-
square random variable in probability asnT increases. The
result is summarized in the following Theorem.

Theorem 1 (Conditional Convergence of Packet Outage Prob-
ability). If the power allocation policyP is regular, then

for almost all3 given user selectionA with CSIT Ĥ, the
conditional outage probabilityPout converges in probability
to non-central chi-square cdf:

Pout(rk, pk,A, Ĥ) = Fχ2(s2,σ2)

(
Λk(µI(Ĥ) + 1)

pk

)
. (13)

where Fχ2(s2,σ2)(y) is the c.d.f. of non-central chi-square
distribution with 2 degrees of freedom (non-central parameter
s2 = |ĥH

k wk|2 and varianceσ2) and µI(Ĥ) = P0σ
2 +∑

j 6=k pj |ĥH
k wj |2 is a constant.

Please refer to appendix for the proof. Figure 4 illustrates
the conditional average outage probability for user 1 versus
number of antennasnT and SNR = 10dB. Observe that the
simulated packet outage probability matches the approximated
packet outage probability using non-central chi-square distri-
bution as in (13) very well for moderate number of antennas.
Hence, we can approximate thePout by its asymptotic distri-
bution (non-central chi-square) using Theorem 1.

B. Closed-form Solutions for Power and Rate Allocations

In this section, we shall derive simple closed-form solution
for power and rate allocations. From the constraintPout = ǫ
in Prob. 1, we have:

Pout = ǫ⇐⇒ Λk(µI(Ĥ) + 1)/pk = ϕk(ǫ)

⇐⇒ Λk = pkϕk(ǫ)/(µI(Ĥ) + 1) (14)

whereϕk(ǫ) = F−1
χ2(s2,σ2)(ǫ). Based on NEOUS algorithm

(elaborated in the next section), the selected CSIT will have
CSIT square-norms (ψ) bounded bynT (1−σ2)(B−, B+) and
|ĥH

k ĥj | ≤ ‖ĥi‖‖ĥj‖θ. Hence, we have

|ĥH
k wj |2 =

∣∣∣ĥH
k UH

(
Λ + λjI

)−1
Uĥj

∣∣∣
2

/ψ ≤ |ĥH
k ĥj |2

ψλ
2

j

≤ ψθ2/λj
2

(15)

where
∑

i∈A

ˆ̃
hi

ˆ̃
h

H

i = UΛUH and therefore,µI(Ĥ) ≤
σ2P0 + P0θ

2ψ/λ̃2 whereλ̃ = minj∈A λj is a constant. From
(14), the constraintPout = ǫ in Problem 1 is satisfied if and
only if rk = log2(1 + pkγk) where

γk = ϕk(ǫ)/(µI(Ĥ) + 1) ≥ γ̃k =
ϕk(ǫ)

1 + P0σ2 + P0θ2ψ/λ̃2

(16)
is the average SINR of userk (per unit received power). Hence,
we shall optimize the lower bound of the conditional goodput
based on the lower bound of SINR in (16). In the next section,
we shall illustrate that average system goodput achieved bythe
power and rate allocations obtained, together with the NEOUS
scheduling, has the same order of growth as in the optimal
dirty paper coding (DPC) system and hence, the proposed
solution is in factorder-optimal.

3”Almost all” here refers to with probability 1.
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Substituting the constraintPout = ǫ into the Lagrangian
function in (11), Lagrangian function becomes:

L({pk}, {rk};β, ξ, {κk}, {αk}) = (1 − ǫ)
∑

k

rk

−β (rk − log2(1 + pkγ̃k)) − ξ

(
∑

k

pk − P0

)

−
∑

k

κkνk −
∑

k

αkpk.

The optimizing rate and power allocation solution(r∗k, p
∗
k) can

be obtained using standard optimization techniques and they
are given by:

p∗k =

(
1 − ǫ

ξ
− 1

γ̃k

)+

andr∗k =

[
log2

(
(1 − ǫ)γ̃k

ξ

)]+

(17)
whereξ > 0 is the Lagrange multiplier chosen to satisfy the
constraint

∑
k pk = P0.

C. Near-Orthogonal User Scheduling (NEOUS) forA
After we have solved for the power and rate allocations,

the remaining variable in the optimization is the user setA
which is combinatorial. The optimal solution forA involves
exhaustive search over all possible combinations and the
complexity is exponential inK and is not feasible for moderate
K and nT . In this section, we propose anear-orthogonal
user scheduling(NEOUS) algorithm which is of much lower
complexity and can be shown to be asymptotically optimal
for largeK. To reduce the search complexity, we shall limit
the search to a smaller set of users while ensuring that a user
set that will be found (from the restricted search) is close
to optimal with high probability. We first have the following
definition.

Definition 1 (Near Orthogonal Set). A near orthogonal set
Sθ,nT

is defined to be the collection of user setsA such that
users inA are near orthogonalfrom each other. That is:

Sθ,nT
=
{
A ⊂ {1, 2, ..,K} : |ĥH

i ĥj | ≤ ‖ĥi‖‖ĥj‖θ
andnT (1 − σ2)B− ≤ ‖ĥi‖2 ≤ nT (1 − σ2)B+,

∀i 6= j ∈ A and |A| = nT } (18)

Note that the near orthogonal setSθ,nT
is parameterized by

(θ,B−, B+). As θ → 0, the CSITs in anyA ∈ Sθ,nT
are

increasingly orthogonal. In addition, the CSITs inA ∈ Sθ,nT

will have norms bounded betweennT (1 − σ2)(B−, B+).
Hence, instead of doing exhaustive search forA over all
possible combinations, we can simply pick anyA ∈ Sθ,nT

because from the definition ofSθ,nT
, any member ofSθ,nT

will be ”good candidate”. Intuitively, near orthogonal vectors
allow Tx-MMSE beamforming to perform well4.

4Alternatively, one can further improve the performance by searching the
best member inSθ,nT

. The extra complexity will be smaller than the original
exhaustive search becauseSθ,nT

is of much smaller cardinality (compared
with the set of all subsets of{1, 2, ..,K} in exhaustive search). Yet, we shall
illustrate that both ways (with or without further search inSθ,nT

) areorder
optimal w.r.t. cross-layer gain.

Let Ps = Pr[|Sθ,nT
| > 0] be the probability that the

near orthogonal setSθ,nT
is non-empty. In order for the

NEOUS algorithm to work, we have to make sure there is
high probability that the near orthogonal setSθ,nT

is non-
empty (i.e.Ps → 1). As K increases, we would like to find
out how fast(B−, B+) can scale with respect toK so thatPs

is still close to 1. In fact, using similar approach as in [11], we
can show that if(B−, B+) increases at most on the order of
logK, then asymptotically asK → ∞, we still havePs → 1.
Specifically, the result is summarized below.

Asymptotic Existence Probability ofSθ,nT
: For any given

δ > 0, if B− = Θ(logK), B+ = Θ(logK), θ = Θ(1/
√
nT )

and K = g−1(nT ) for some strictly increasing function
g(x) = o(x), then there exists some constantK0(δ, θ) > 0
such thatPs = Pr[|Sθ,nT

| > 0] > 1 − δ for all K >
K0(δ, θ, nT ). Note thatg(x) = o(x) is the small o notation
meaning thatlimx→∞

g(x)
x

= 0 (g(x) is asymptotically
smaller thanx). For example,g(x) =

√
x (K = n2

T ) or
g(x) = log(x) (K = exp(nT )) are possible choices forg(x).

D. Summary of the NEOUS Scheduling and Power/Rate Allo-
cation Solution

Figure 2 illustrates the top level flow chart of the proposed
cross-layer scheduling solution for multi-antenna systemwith
outdated CSIT. This is elaborated in the following steps.

• Step 1: For a given set of CSIT{ĥ1, ...., ĥK}, Initialize
A = ∅ andk = 1.

• Step 2:If nT (1−σ2)B− ≤ ‖ĥk‖2 ≤ nT (1−σ2)B+, then
A → A⋃{k} and go to step 3. Otherwise,k → k + 1
and goto step 2.

• Step 3: For k /∈ A, if |A| < nT , nT (1 − σ2)B− ≤
‖ĥk‖2 ≤ nT (1 − σ2)B+ and |ĥH

k ĥj | ≤ ‖ĥk‖‖ĥj‖θ for
all j ∈ A, thenA → A⋃{k} and goto step 3. Otherwise,
if |A| = nT , the goto step 4. Else, randomly form aA
with |A| = nT and goto step 4.

• Step 4:For the givenA, calculate the Tx-MMSE weights
according to (5). Calculate the rate and power allocation
using (17). The algorithm is completed.

V. A SYMPTOTIC ANALYSIS ON THE SYSTEM GOODPUT

AND CROSS-LAYER GAINS

In this section, we shall obtain a lower bound on the
average system goodput of the multi-antenna system based
on Tx-MMSE beamforming, the power and rate allocations
in (17) as well as the NEOUS scheduling for asymptotically
largeK and nT . To simplify the notation, we shall assume
that K = g−1(nT ) for some strictly increasing function5

g(x) = o(x). Hence, we shall consider limit onnT only with
the understanding that asnT scales,K also scales to infinity
(at a faster rate thannT ). We shall show that the lower bound
of the average system goodput grows at the same rate as that
of the optimal DPC performance and hence, show that the
proposed cross-layer solution is in factorder optimal.

Due to the NEOUS scheduling, there is probability one
that the CSIT of the selected user setA have norms

5For example,g(x) = xα for 0 < α < 1 andg(x) = log(x) are possible
choice ofg(x).
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‖ĥk‖2 ≥ nT (1 − σ2)B− = Θ(nT (1 − σ2) logK). Nor-
malizing the CSIT ĥk with

√
nT (1 − σ2)B− and define

ĝk = ĥk/
√
nT (1 − σ2)B−, the non-central parameters =

|ĥH
k wk|2 can be expressed as:

s = |ĥH
k wk|2 ≥ nT (1 − σ2)B−

∣∣∣∣∣∣
ĝH

k

(
nT∑

i=1

ĝiĝ
H
i + λkI

)−1

ĝk

∣∣∣∣∣∣

2

= nT (1 − σ2)B−

∣∣∣ĝH
k

(
Mk + ĝkĝ

H
k

)−1
ĝk

∣∣∣
2

= nT (1 − σ2)B−

|ĝH
k M−1

k ĝk|2
(1 + |ĝH

k M−1
k ĝk|)2

(19)

where Mk =
(∑

i6=k ĝiĝ
H
i + λkI

)
. From [12], we have

|ĝH
k M−1

k ĝk| converges almost surely to a constantbg =∫∞

0

[
1

ω+λ

]
dG∗(ω) asnT → ∞ whereω is the eigenvalue of∑

i6=k ĝiĝ
H
i andG∗(ω) is the limiting empirical distribution of

ω (whose Stieljas transform is given by (29)). Hence, we have
almost surely, the non-central parameters2 is lower bounded
by:

s2 ≥ nT (1−σ2)B−

b2g
(1 + bg)2

= Θ(nT (1−σ2) logK) (20)

Hence, thescaling factorϕk(ǫ) in (17) is given by:

ϕk(ǫ) =

{
Θ(s2) = Θ(nT (1 − σ2) logK) if 0 ≤ σ2 < 1,

Θ(F−1
χ2(0,σ2)(ǫ)) if σ2 ≈ 1.

(21)
for smallǫ and largenT (and hence, largeK asK = g−1(nT ))
whereF−1

χ2(0,σ2)(ǫ) is the inverse cdf of the central chi-square
distribution. Figure 3 verifies the order of growth ofϕk(ǫ)
with respect to the non-central parameters2 in (21).

On the other hand, for largenT , λ converges to the solution
of the fixed point equation in (30) which is of constant
order. Finally, from Section IV-C, we haveθ = Θ(1/

√
nT ).

As a result, the lower bound of the SINR̃γk is of the
orderΘ

(
ϕk(ǫ)

1+P0σ2c1+c2P0(1−σ2)

)
for some constantsc1 andc2.

Substituting the power and rate allocation solutions in (17) into
the system goodput, we have

Uthp ≥ E
Ĥ

[
∑

k∈A

rk(1 − ǫ)

]
= (1 − ǫ)E

Ĥ

[
∑

k∈A

[
log2

(
(1 − ǫ)γ̃k

ξ

)]+]

=︸︷︷︸
(a)

(1 − ǫ)E
Ĥ

[
∑

k∈A

Θ

(
log2

(
1 +

P0ϕk(ǫ)

nT (1 + σ2P0c1 + c2P0(1 − σ2)

))]

= (1 − ǫ)nT Θ

(
log2

(
1 +

P0ϕ(ǫ, nT ,K, σ2)

nT (1 + σ2P0c1 + c2P0(1 − σ2))

))
(22)

where (a) is due to the fact that from (17) and the constraint∑
k∈A p

∗
k = P0, we have(1 − ǫ)/ξ = Θ( P0

nT
+ 1

nT

∑
k

1
eγk

)

andϕ(ǫ, nT ,K, σ2) = F−1
χ2(s2=nT (1−σ2) log K,σ2)(ǫ).

A. Numerical Results and Discussions

• Multi-user Diversity Gain: In general, forσ2 < 1, large
nT (and hence, largeK), largeP0 and small target packet
outage probabilityǫ, the multi-user diversity gain on

the average system goodput of our proposed cross layer
design is of the orderΘ(nT log[ϕ(ǫ, nT ,K, σ2)/nT ]) =
Θ(nT log[(1 − σ2) logK]). This demonstrates that with
proper cross-layer design, spatial multiplexing gainnT

is still important for the total system goodput even when
there is CSIT error. Figure 5 illustrates the average system
goodput versus number of users (K) for nT = 10,
SNR=10dB and CSIT errors ofσ2 = 0.01, 0.1, 0.5.
We see that the order of growth with respect toK
matched closely with the asymptotic expression in (22)
log
(
(1 − σ2) logK

)
even for large CSIT errorsσ2 =

0.5. On the other hand, the effect of CSIT errors on the
system goodput is that exponentially largerK is needed
to compensate for the penalty on system goodput due to
CSIT errors.

• Performance at Large CSIT Errors: When the CSIT
error σ2 → 1, the factor ϕ(ǫ, nT ,K, σ2) → c3 =
Θ(F−1

χ2(0,σ2)(ǫ)) which is a constant independent ofnT

and K. Hence, the average system goodput in (22)
approaches(1− ǫ)nT Θ

(
log2

(
1 + c3

nT (σ2c1)

))
for large

P0 and hence, the multi-user diversity gain essentially
vanished. The average goodput scales at the order
Θ(nT log(1 + c/nT )) for some constantc. Hence, when
we have large CSIT errors, spatial multiplexing does
not offer much gain in system goodput (as illustrated in
figure 6) due to mutual interference between the spatial
channels.

• Performance at Small CSIT Errors: When the CSIT
errorσ2 ≈ 0, the factorϕ(ǫ, nT ,K, σ2) → Θ(nT logK)
and the average system goodput in (22) approaches
(1− ǫ)nT Θ

(
log2

(
1 + log K

c2

))
for largeP0. Hence, for

small CSIT errorσ2, the optimal order of growth of the
multiuser diversity gain (with respect toK) in system
goodput (log logK) can be maintained using the pro-
posed cross-layer design. This is the same order of growth
with respect toK as the DPC processing with perfect
CSIT. Furthermore, the system goodput grows linearly
as nT (as illustrated in figure 6) and this indicates that
spatial multiplexing is effective to increase the system
goodput for largeK even with CSIT errors.

• Comparison of MMSE versus other baseline refer-
encesFigure 7 illustrate the benchmarking results of the
proposed robust cross-layer MMSE based scheduler. We
compared the system goodput versusK of the proposed
scheduler against the cross-layer ZF-based scheduler,
TDMA-based scheduler (selecting one user at a time)
as well as the opportunistic scheduler[4]. We showed
that the proposed MMSE-based scheduler out-performs
the others in both small and large CSIT errors (σ2 =
0.02, 0.1). Furthermore, the sensitivity of the proposed
MMSE-based solution (w.r.t. CSIT errors) is significantly
less than that of the ZF-based scheduler.

VI. CONCLUSION

In this paper, we propose a cross-layer design withnear-
orthogonal user selectionand dynamic power and rate allo-
cation with Tx-MMSE processing for multi-antenna systems
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with outdated CSIT. The CSIT error is incorporated in the
cross-layer design to maximize the system goodput. Using ran-
dom matrix theory, we derived closed form expressions for the
optimal power and rate allocations as well as the asymptotic
system goodput. We found that asymptotically for sufficiently
large nT and K = g−1(nT ) for some strictly increasing
function g(x) = o(x), the multiuser diversity gain on the
system goodput grows at the order ofnT log[(1 − σ2) logK]
(whereσ2 is the CSIT error variance) whenσ2 < 1. Hence, the
proposed cross-layer design isorder-optimalw.r.t. K despite
the CSIT errors. On the other hand, whenσ2 ≈ 1, the multi-
user diversity gain vanished and spatial multiplexing cannot
give any benefit due to spatial interference.
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APPENDIX A
PROOF OFLEMMA 1

From (5), the Tx-MMSE weightwi is given by

wi =


∑

j

ˆ̃
hj

ˆ̃
h

H

j + λ̃I




−1

ˆ̃
hi

=





∑

j 6=i

ˆ̃
hj

ˆ̃
hj

H

+ λiI




︸ ︷︷ ︸
Mi

+
ˆ̃
hi

ˆ̃
h

H

i




−1

ˆ̃
hi

H

=︸︷︷︸
(a)


M−1

i − M−1
i

ˆ̃
hi

ˆ̃
h

H

i M−1
i

1 +
ˆ̃
h

H

i M−1
i

ˆ̃
hi


 ˆ̃

hi (23)

where (a) is by matrix inversion lemma andλ̃ is the Lagrandge
multiplier chosen to satisfy‖wi‖2 = 1. Hence, we have

‖wi‖2 =

∣∣∣∣∣∣

ˆ̃
h

H

i M−2
i

ˆ̃
hi

1 +
ˆ̃
h

H

i M−1
i

ˆ̃
hi

∣∣∣∣∣∣

4

(24)

Consider the term in (24),

ˆ̃
h

H

i M−2
i

ˆ̃
hi =

(
Ui

ˆ̃
hi

)H

diag

(
1

(λ + s1)2
, ..,

1

(λ+ snT
)2

)

(
Ui

ˆ̃
hi

)
=
∑

n

1

(λ+ sn)2
|gn|2 (25)

where Ui is the eigenmatrix ofMi and g =

(
Ui

ˆ̃
hi

)
is

identically distributed asˆ̃hi with E [|gn|2] = 1/nT . From [12],

the term ˆ̃
h

H

i M−1
i

ˆ̃
hi → ag =

∫∞

0
1

s+λ
dG∗(s) almost surely

as nT → ∞ whereG∗(s) is the limiting distribution of the
eigenvaluess with Stiejlas transform given by (29). Hence,
the constraint‖wi‖2 = 1 implies

‖wi‖2 = 1

⇒ E [
√
‖wi‖] = 1 ⇒ E

[
1

1 + ag

∑

n

1

(λ+ sn)2
|gn|2

]

=
1

1 + ag

E
[
∑

n

1

(λ+ sn)2
E [|gn|2]

]

=
1

1 + ag

E
[

1

nT

∑

n

1

(λ+ sn)2

]

=
1

1 + ag

∫ ∞

0

1

(λ+ s)2
dG∗(s) = 1

APPENDIX B
CONDITIONAL CONVERGENCE OFIB

Observe thatE [IB ] is given by:

E [IB ] = 2ℜ
∑

j 6=k

E
Ĥ

[
pjµ

∗
Xj

E [X̃j |Ĥ]
]

= 2ℜ
∑

j 6=k

E
Ĥ

[
pjµ

∗
Xj

0
]

= 0. (26)
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From (23), we have

E [|µXi
|4] = E


 |ˆ̃h

H

k M−1
k

ˆ̃
hi|4

|1 +
ˆ̃
h

H

k M−1
k

ˆ̃
hk|4




≤ E [|ˆ̃h
H

k M−1
k

ˆ̃
hi|4] ≤︸︷︷︸

(a)

O(1/n2
T ) (27)

and

E
[∣∣wH

i wj

∣∣4
]
≤ E




∣∣∣∣∣∣

ˆ̃
h

H

i M−2
i

ˆ̃
hj

1 +
ˆ̃
h

H

i M−1
i

ˆ̃
hi

∣∣∣∣∣∣

4



≤ E
[∣∣∣∣

ˆ̃
h

H

i M−2
i

ˆ̃
hj

∣∣∣∣
4
]

≤︸︷︷︸
a

O(1/n2
T ) (28)

where (a) in both equations are from [12]. Similarly, we have
E [|µXi

|8] ≤ O(1/n4
T ). Consider

V ar(IB) = E [|IB |2]

≤ E


∑

i,j

pipj

(
µ∗

Xi
X̃i + µXi

X̃∗
i

)(
µ∗

Xj
X̃j + µXj

X̃∗
j

)



=
∑

i,j

E
Ĥ

[
pipj

(
µ∗

Xi
µXj

E [X̃iX̃
∗
j |Ĥ] + µXi

µ∗
Xj

E [X̃∗
i X̃j|Ĥ]

)]

≤ σ2

nT (1 − σ2)

∑

i,j

E
[
pipj|µXi

µXj
||wH

j wi|
]

≤︸︷︷︸
(b)

O(1/nT )
∑

i

√
E [p4

i ]E [|µXi
|4] + O(1/nT )

∑

i6=j

√
E [p2

i p
2
j ]E [|µXi

µXj
|2|wH

j wi|2]

≤︸︷︷︸
(c)

O(1/nT )
∑

i

O(1/n3
T ) + O(1/nT )

∑

i6=j

√
√
E [p4

i ]E [p4
j ]

√√
E [|µXi

|8]E [µXj
|8]E [|wH

j wi|4]

≤︸︷︷︸
(d)

O(1/n3
T ) + O(1/nT )

∑

i6=j

O(1/n3.5
T ) ≤ O(1/n2.5

T )

where (b), (c) are due to Cauchy-Swartz inequality and (d) is
due to (28) and (27). Hence,Pr[IB ≤ ǫ] ≥ 1 − Var(IB)

ǫ2
≥

1 − O(1/n2.5
T ǫ2) for any ǫ > 0. Set ǫ = 1/n1+δ

T for some
δ ∈ (0, 0.5), we havePr[IB ≤ O(1/n1+δ

T )] → 1.

APPENDIX C
CONDITIONAL CONVERGENCE OFIC

Consider

V ar(IC) =
∑

i,j

E
[
pipj

σ4

n2
T (1 − σ2)2

∣∣wH
i wj

∣∣2
]

≤︸︷︷︸
(a)

O(1/n2
T )
∑

i,j

√
E
[∣∣wH

i wj

∣∣2
]√

E [p2
i p

2
j ]

≤︸︷︷︸
(b)

O(1/n2
T )
∑

i,j

√
E
[
|w∗

i wj |2
]√√

E [p4
i ]
√
E [p4

j ]

≤︸︷︷︸
(c)

O(1/n3
T ) + O(1/n4

T )
∑

i6=j

O(1/nT ) ≤ O(1/n3
T )

where (a) and (b) are due to Cauchy-Swartz inequality and
(c) is from (28). Since Var(IC) drops faster thanE2[IC ] =
O(1/n2

T ), we haveIC converges toE [IC ] in probability as
nT increases.

APPENDIX D
PROOF OFTHEOREM 1

The asymptotic convergence result hinges on the fact that
the limiting empirical distribution of the eigenvalues (ω) of

a large random matrix

(∑
j 6=k

ˆ̃
hj

ˆ̃
h

H

j

)
is deterministic and

converges weakly toG∗(ω). In general,G∗(ω) does not have
a closed-form solution. Its Stieltjes transform[13], defined as
m(z) =

∫
1

ω−z
dG∗(ω), satisfies:

m(z) =

[
−z + L

∫
1

1 +m(z)
dG∗(z)

]−1

∀z ∈ C+ ≡ {z : ℑ{z} > 0}
(29)

Based on this, we shall first introduce several important
lemmas which will be helpful to obtain the asymptotic packet
outage expression.

Lemma 1. Asymptotically for largenT , the Lagrandge mul-
tiplier λk for the MMSE weights in (5) is a solution of the
following fixed point equation inλ.
∫ ∞

0

1

(ω + λ)2
dG∗(ω) =

(
1 +

∫ ∞

0

1

ω + λ
dG∗(ω)

)
(30)

Proof 1. From (5), the Tx-MMSE weightwi is given by

wi =


∑

j

ˆ̃
hj

ˆ̃
h

H

j + λ̃I




−1

ˆ̃
hi

=





∑

j 6=i

ˆ̃
hj

ˆ̃
hj

H

+ λiI




︸ ︷︷ ︸
Mi

+
ˆ̃
hi

ˆ̃
h

H

i




−1

ˆ̃
hi

H

=︸︷︷︸
(a)


M−1

i − M−1
i

ˆ̃
hi

ˆ̃
h

H

i M−1
i

1 +
ˆ̃
h

H

i M−1
i

ˆ̃
hi


 ˆ̃

hi (31)

where (a) is by matrix inversion lemma andλ̃ is the Lagrandge
multiplier chosen to satisfy‖wi‖2 = 1. Hence, we have

‖wi‖2 =

∣∣∣∣∣∣

ˆ̃
h

H

i M−2
i

ˆ̃
hi

1 +
ˆ̃
h

H

i M−1
i

ˆ̃
hi

∣∣∣∣∣∣

4

(32)

Consider the term in (32),

ˆ̃
h

H

i M−2
i

ˆ̃
hi =

(
Ui

ˆ̃
hi

)H

diag

(
1

(λ+ s1)2
, ..,

1

(λ+ snT
)2

)

(
Ui

ˆ̃
hi

)
=
∑

n

1

(λ+ sn)2
|gn|2

where Ui is the eigenmatrix ofMi and g =

(
Ui

ˆ̃
hi

)
is

identically distributed as
ˆ̃
hi with E [|gn|2] = 1/nT . From [12],
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the term
ˆ̃
h

H

i M−1
i

ˆ̃
hi → ag =

∫∞

0
1

s+λ
dG∗(s) almost surely

as nT → ∞ whereG∗(s) is the limiting distribution of the
eigenvaluess with Stiejlas transform given by (29). Hence, the
constraint‖wi‖2 = 1 implies

‖wi‖2 = 1

⇒ E [
√
‖wi‖]

= 1 ⇒ E
[

1

1 + ag

∑

n

1

(λ+ sn)2
|gn|2

]
=

1

1 + ag

E
[
∑

n

1

(λ+ sn)2
E [|gn|2]

]

=
1

1 + ag

E
[

1

nT

∑

n

1

(λ+ sn)2

]

=
1

1 + ag

∫ ∞

0

1

(λ+ s)2
dG∗(s) = 1

Define the spatial interferenceIk as:

Ik =
∑

j 6=k

pj |h̃H
k wj |2 =

∑

j 6=k

pj |µXi
|2

︸ ︷︷ ︸
IA

+ 2ℜ


∑

j 6=k

pjµ
∗
Xj
X̃j




︸ ︷︷ ︸
IB

+
∑

j 6=k

pj |X̃j |2

︸ ︷︷ ︸
IC

(33)

whereXj = h̃H
k wj , µXj

=
ˆ̃
h

H

k wj and X̃j = Xj − µXj
. We

would like to show that for almost all realizations of CSIT,
the spatial interferenceIk converges to a deterministic constant
as nT increases. We first have the following definitions and
Lemmas.

Definition 2 (Asymptotic Upper BoundO(.)). f(n) =
O(g(n)) if there existsM > 0 andn0 > 0 such that|f(n)| ≤
M |g(n)| for all n > n0. In other words,g(n)/f(n) < M for
someM > 0 asn→ ∞.

Definition 3 (Asymptotic Tight Bound Θ(.)). f(n) =
Θ(g(n)) if there existsMu > 0, Ml > 0 and n0 > 0 such
that Ml|g(n)| ≤ |f(n)| ≤ Mu|g(n)| for all n > n0. In other
words,Ml < g(n)/f(n) < Mu for someMu > 0 andMl > 0
asn→ ∞.

Definition 4 (Regular Power Allocation Policy). A power
allocation policyP = {pi} is said to beregular if E [p2

i ] =
O(1/n2

T ) and E [p4
i ] = O(1/n4

T ) for all i ∈ {1, 2, ..,K}.

The regularity requirement in Definition 4 implies that there
is no single user being allocatedexceptionally large poweron
average. This is a mild condition because for largenT , the
fluctuation in the channel quality among users are limited.

Lemma 2 (Conditional Convergence ofIB). If P = {pi}
is regular, we haveIB = 2ℜ

(∑
j 6=k pjµ

∗
Xj
X̃j

)
drops faster

thanO(1/nT ) for almost all CSIT realizations. Precisely, we
have Pr[IB ≤ O(1/n1+δ

T )] → 1 for someδ > 0 as nT

increases.

Proof 2. Please refer to appendix B.

Lemma 3 (Conditional Convergence ofIC ). If P = {pi}
is regular, we haveIC =

∑
j 6=k pj |X̃j |2 converges toIC =

P0σ
2/ψ in probability asnT increases.

Proof 3. Please refer to appendix C.

Fig. 1. Downlink transmit MMSE strategy with isolated encoding per spatial
stream.nT independent streams of information carrying message indices
{ω1, ..., ωnT } are spatially multiplexed at the base station using MMSE
beam-forming.

Using Lemmas 2 and 3, we have for almost all CSIT
realizations,Ik → Ik = P0σ

2/ψ +
∑

j 6=k pj |µXj
|2 (condi-

tioned on CSIT) in probability. Therefore, we haveSk →
pk|Xk|2 − ΛkIk. SinceXk is a complex Gaussian random
variable (conditioned on CSIT) with non-zero mean,ψ|Xk|2
is a non-central chi-square random variable with 2 degrees
of freedom, noncentral parameters = |ĥH

k wk|2. Hence, the
conditional outage probability can be expressed as:

Pout(rk, pk,A, Ĥ) = Pr

[
Skψ < Λk|Ĥ

]
= Fχ2(s2,σ2)

(
Λk(µI(Ĥ) + 1)

pk

)

where Fχ2(s2,σ2)(y) is the c.d.f. of non-central chi-square
distribution with non-central parameters2 = |ĥH

k wk|2 and
varianceσ2.
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Fig. 2. A flow chart of the NEOUS cross layer scheduling algorithm.
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Fig. 3. Order of growth ofϕk(ǫ) with respect to the non-central parameter
s2 for ǫ = 10−2.
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Fig. 4. Conditional average packet outage probability versus number of
antennasnT for CSIT errorsσ2 = 0.05 and SNR = 10dB.
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σ2 = 0.01, simulation result

σ2 = 0.01, analytical result

σ2 = 0.1, simulation result

σ2 = 0.1, analytical result

σ2 = 0.5, simulation result

σ2 = 0.5, analytical result

Fig. 5. Average system goodput versus number of usersK for nT = 10,
CSIT errorsσ2 = 0.01, 0.1, 0.5 and SNR = 10dB.
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Fig. 6. Average system goodput versus number of transmit antennas at the
base stationnT for K = 50, CSIT errorsσ2 = 0.01, 0.05, 0.1, 0.5, 0.9 and
SNR = 12dB. Solid line represents analytical expression andmarker represents
simulation results.
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Fig. 7. Average system goodput versusK of the proposed cross-layer MMSE,
cross-layer ZF, TDMA-based scheduler (selecting one user at a time) and
opportunistic scheduler fornT = 4, CSIT errorsσ2 = 0.02, 0.1 and SNR =
10dB.


