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Abstract

Large MIMO network promises high energy efficiency by employing a large number of antennas.

However, the overhead to obtain the full channel state information is very large. To reduce the overhead,

we propose a downlink antenna selection scheme, which selects a subset of antennas based on the

knowledge of large scale fading factors to serve a given set of users in large distributed MIMO

networks employing regularized channel inversion. We study the joint optimization of antenna selection,

regularization factor, and power allocation to maximize the average weighted sum-rate. The problem

is a mixed combinatorial and non-convex problem whose objective and constraints have no closed-

form expressions. Random matrix theory is used to derive asymptotically accurate expressions for the

objective and constraints. The joint optimization problem is decomposed into three subproblems, each

of which is solved by an efficient algorithm. We derive structural solutions for some special cases and

obtained the capacity scaling law under very large distributed MIMO networks. We also show that for

sufficiently large number of distributed antennas, there is an asymptotic decoupling effect, which can

be exploit to simplify algorithms and physical layer processing. Simulations illustrate that the proposed

scheme achieves significant performance gain compared with various baselines.
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I. INTRODUCTION

Large MIMO network has been a hot research topic lately due to the potentially high energy efficiency

[1]. Such a network is equipped with an order of magnitude more antennas than conventional systems.

For a base station (BS) with M � 1 antennas, the total transmit power can be made as O (1/M), and the



transmit power per antenna would be O
(
1/M2

)
[2]. Furthermore, the gain in multiuser system is very

impressive due to the increased degrees of freedom for large MIMO systems. There have been plenty of

works on large MIMO networks, including various topics from information theoretical capacity [3], [4]

to more practical issues such as transceiver design [5]–[7], channel state information (CSI) acquisition,

and pilot contamination problem [8], [9]. Various downlink precoding schemes have been proposed

and analyzed. Remarkably, the simple channel inversion (CI) precoding is shown to achieve most of

the capacity of large MIMO downlink [2]. One of the main challenges of achieving the performance

predicted by the idea analysis is how to obtain the CSI at the transmitter (CSIT) for a very large number

of antennas with acceptable amount of overhead. In most of the existing works, Time-Division Duplex

(TDD) is assumed and channel reciprocity can be exploited to obtain CSIT via uplink pilot training.

However, there is still no efficient method for CSIT training and feedback in Frequency-Division Duplex

(FDD) networks. Even if perfect channel reciprocity is assumed, the performance of multi-cell large

MIMO system is still limited by the CSI error caused by pilot contamination [8], [9]. In [10], [11],

random matrix theory has been used to analyze the asymptotic performance of CI and/or regularized

channel inversion (RCI) [12]. However, they did not consider large scaling fading such as path loss and

shadow fading, which has huge impact on the performance of large distributed MIMO networks.

In this paper, we focus on large distributed MIMO networks in which there are M distributed antennas

(thin base stations) linked together by high speed fiber backhaul as illustrated in Fig. 1. In order to limit

the pilot training overhead for downlink transmissions, a subset of S active antennas is selected to serve

a given set of K users. The main gain of employing a large number of distributed antennas is due to

the reduced transmission distances between each user and the antennas nearby. There are some works

studying antenna selection problems in point-to-point MIMO links [13], [14]. Yet. these approaches are

not applicable due to the heterogeneous path loss induced by the distributed topology. We study the

joint optimization of antenna selection, regularization factor in RCI precoding, and power allocation,

which is formulated as an average weighted sum-rate maximization problem under sum power and per

antenna power constraints. The optimization requires the knowledge of large scale fading factors only

but there are several first-order technical challenges that need to be addressed.

• Closed-Form Optimization Objective and Constraints: There is no simple closed-form expres-

sions for the average weighted sum-rate and the average per-antenna transmission power due to

the distributed topology. The asymptotic approach in [10], [11] cannot be applied here due to the

heterogeneous path loss among antenna-user pairs.

• Combinatorial Optimization Problem: Even if there were expressions for the optimization
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Figure 1. Illustration of a large distributed MIMO network

objectives, the antenna selection problem is combinatorial and brute force solution requires ex-

haustive search, which is highly undesirable. Furthermore, traditional scheme in which each user is

associated with the closest antennas (thin base stations) is highly suboptimal due to the cooperative

processing.

In this paper, we first outline the system model and the antenna selection formulation in Section

II and III. Using random matrix theory, we derive an asymptotically accurate expressions for the

optimization objectives and constraints in Section III. By exploiting the implicit structure in the objective

and constraints functions, the joint optimization problem is decomposed into simpler subproblems, each

of which is solved by an efficient algorithm in Section IV. In Section V, we focus on studying the

structural properties of the solution for some interesting special cases. We show that for large M , there is

an asymptotic decoupling effect in the distributed MIMO networks. Simulations in Section VI illustrate

that the proposed solution achieve significant performance gain compared with various baselines.

II. SYSTEM MODEL

A. Channel Model

Consider the downlink of a large distributed MIMO network with M � 1 distributed transmit

antennas and K single-antenna users as illustrated in Fig. 1. The M transmit antennas are distributed

geographically and connected to a Cloud RAN [15] via high speed fiber backhaul. Denote hkm as the

channel between the mth transmit antenna and the kth user. We consider composite fading channel, i.e.,

hkm = σkmWkm, ∀k,m, where σkm > 0 is the large scale fading factor caused by, e.g., path loss

and/or shadow fading, and Wkm is the small scale fading factor.



Assumption 1 (Assumptions on the composite fading channel model): The small scale fading process

Wkm (t) ∼ CN (0, 1) is quasi-static within a time slot but i.i.d. w.r.t. time slots and the spatial indices

k,m. The large scale fading process σkm (t) is assumed to be a slow ergodic random process according

to a general distribution. It is also independent w.r.t. the spatial indices k,m.

B. Physical Layer Processing

We assume M � K in the distributed MIMO network. While the M antennas are geographically

distributed in the coverage area, the baseband processing is centralized at the cloud RAN. To limit

the pilot training overhead to serve the K users, we consider antenna selection scheme where only a

subset A, |A| = S of the M distributed antennas are selected (activated) to serve the K users. For

convenience, let Aj denote the jth element in A. Let H (A) ∈ CK×S denote the composite downlink

channel matrix between the selected S antennas and the K users, and define Σ (A) ∈ RK×S++ as the

corresponding large scale fading matrix, whose element at kth row and the jth column is σkAj . In the

rest of the paper, we will use H and Σ as the simplified notations for H (A) and Σ (A) when there is

no ambiguity. The cloud RAN is assumed to have knowledge of the K ×M large scale fading factors

σkm’s for antenna selection but only the K × S small scale fading factors for linear precoding.

We consider linear precoding processing to support simultaneous downlink transmissions to the K

users using the subset of active antennas A. The K×1 composite receive signal vector for the K users

can be expressed as:

y = HFs + n,

where s = [s1, ..., sK ] ∼ CN (0, IK) is the symbol vector, F ∈ CS×K is the pre-coding matrix and

n ∼ CN (0, IK) is the AWGN noise vector. We employ regularized channel inversion (RCI) pre-coding

[12] which is given by

F =
(
H†H + αIS

)−1
H†P1/2 = H†

(
HH† + αIK

)−1
P1/2, (1)

where α is the regularization factor and P = diag (p1, ..., pK) is a power allocation matrix. Define power

allocation vector as p = [p1, ..., pK ]T . Note that the above RCI is a generalization of the conventional

RCI in [12], where P is fixed as cIK and c is chosen to satisfy sum power constraint.

For convenience, define the normalized channel matrix Ĥ = H/
√
S and normalized regularization

factor ρ = α/S. Let ĥk denote the kth row of Ĥ and ĝj denote the jth column of Ĥ. Define Ĥk as the

matrix Ĥ with the kth row removed, and Pk , diag (p1, ..., pk−1, pk+1, ..., pK) . Using matrix inversion



lemma, it can be shown that the SINR of user k is given by [10]

γk (Σ, ρ,p) =
pkA

2
k

Bk + (1 +Ak)
2 , (2)

where

Ak = ĥk

(
Ĥ†kĤk + ρIS

)−1
ĥ†k,

Bk = ĥk

(
Ĥ†kĤk + ρIS

)−1
Ĥ†kPkĤk

(
Ĥ†kĤk + ρIS

)−1
ĥ†k.

The transmit power of the jth selected antenna in A is given by

pAj (Σ, ρ,p) = ĝ†j

(
ĤĤ† + ρIK

)−1
P
(
ĤĤ† + ρIK

)−1
ĝj/S. (3)

III. OPTIMIZATION FORMULATION FOR DYNAMIC ANTENNA SELECTION

A. Optimization Variables, Objective and Constraints

In this paper, we consider the joint optimization of active antenna set A, regularization factor ρ and

the power allocation p. The optimization is performed over the time scale of large scale fading, i.e., A,

ρ and p are only adaptive to the large scale fading factors. The objective is to maximize the weighted

sum-rate averaged over one large scale fading block. Given a realization of σkm’s and an active antenna

set A, the large scale fading matrix Σ (A) is fixed within a large scale fading block, and the conditioned

average weighted sum-rate is given by

I (A, ρ,p) = E

[
K∑
k=1

wklog (1 + γk (Σ, ρ,p)) |Σ (A)

]
, (4)

where the conditioned expectation E [· |Σ (A) ] is taken over the small scale fading factors, the weights

satisfies wk > 0 and
∑K

k=1wk = 1 without loss of generality. We consider both per antenna and sum

power constraint, which are given by

E [pm (Σ, ρ,p) |Σ (A) ] ≤ p̄m, m ∈ A, (5)

E

[∑
m∈A

pm (Σ, ρ,p) |Σ (A)

]
≤ PT . (6)

B. Problem Formulation

The optimization problem is formulated as follows

max
A,ρ>0,p≥0

I (A, ρ,p) , s.t. (5) and (6) are satisfied, |A| = S. (7)



There are several challenges to solve Problem (7). First, there is no analytical expression for the

optimization objective in (4) and the constraints in (5) and (6). Second, determining the optimal A

in (7) requires an exhaustive search over the entire antenna set. Third, even for fixed A, the problem

is in general non-convex w.r.t. ρ and p, as will be shown later. In this paper, the first challenge is

tackled in this section by using random matrix theory to derive asymptotically accurate expressions

for the optimization objective and constraints. The last two challenges are tackled by decomposing the

problem into simpler subproblems, each of which is solved by an efficient algorithm in Section IV.

We first have the following assumption on the large scale fading matrix Σ.

Assumption 2 (Finite Dynamic Range on Large Scale Fading Matrix): There exist finite positive con-

stant σmax and σmin such that

σmin ≤ |σkm| ≤ σmax, ∀1 ≤ k ≤ K, m ∈ A.

This assumption is a mild assumption and can easily be satisfied in practice.

In the following, we derive asymptotic expressions for SINR and per-antenna power constraints under

Assumption 2 in large system limit when K,S →∞ with the ratio β = K/S fixed.

Lemma 1 (Asymptotic SINR): For a given (A, ρ,p), the following are true:

1) For any k ∈ {1, ...,K}, the system of K equations:

ξkl =
1

S

∑
m∈A

[
σ2
lm/fm

(
~ξk

)]
, l = 1, ...,K, (8)

admits a unique solution ~ξk = [ξk1, ..., ξkK ]T in RK++, where fm
(
~ξk

)
, ρ+ 1

S

∑K
i 6=k

σ2
im

1+ξkm
.

2) For any k ∈ {1, ...,K}, define matrix Dk ∈ RK×K whose element at the lth row and nth column

is given by

Dk,ln =
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nm/

(
(1 + ξkn)2 f2

m

(
~ξk

))]
.

Define vector bk = [bk1, ..., bkK ]T whose lth element is given by

bkl = − 1

S

∑
m∈A

[
σ2
lm/f

2
m

(
~ξk

)]
.

Define vector dk = [dk1, ..., dkK ]T whose lth element is given by

dkl = − 1

S

∑
m∈A

[
σ2
kmσ

2
lm/f

2
m

(
~ξk

)]
.

Then IK −Dk is invertible and thus we can define the following vectors

~φk , (IK −Dk)
−1 bk, (9)

~θk , (IK −Dk)
−1 dk, k = 1, ...,K, (10)



where the lth element of ~φk, denoted by φkl, is the partial derivative of ξkl over ρ.

3) As K,S →∞ with the ratio β = K/S fixed, γk (Σ, ρ,p) in (2) converges almost surely to the

following deterministic value

γ̄k (Σ, ρ,P) =
pkξ

2
kk

− 1
S

∑K
l 6=k

[
plθkl/ (1 + ξkl)

2
]

+ (1 + ξkk)
2
, (11)

where θkl < 0 is the lth element of ~θk.

Lemma 2 (Asymptotic per-antenna power): For a given (A, ρ,p), the following are true:

1) The system of K equations:

vl =
1

ρ+ 1
S

∑
m∈A

[
σ2
lm/hm (v)

] , l = 1, ...,K (12)

admits a unique solution v = [v1, ..., vK ]T in RK++, where hm (v) , 1 + 1
S

∑K
i=1 σ

2
imvi.

2) Define a matrix C ∈ RK×K whose element at the lth row and nth column is given by

Cln =
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nmvl/h

2
m (v)

]
. (13)

Define a diagonal matrix ∆ with the lth diagonal element given by

∆l =
1

S

∑
m∈A

[
σ2
lm/hm (v)

]
. (14)

Define a vector c = [c1, ..., cK ]T with the lth element given by

cl =
1

S

∑
m∈A

[
σ2
lmvl

(
pl +

1

S

K∑
i=1

σ2
imvi (pl − pi)

)
/h2

m (v)

]
.

Then ρIK + ∆−C is invertible and thus we can define the following vector

~ϕ , (ρIK + ∆−C)−1 c. (15)

3) As K,S →∞ with the ratio β = K/S fixed, pm (Σ, ρ,p) in (3) converges almost surely to the

following deterministic value

p̄m (Σ, ρ,p) =
ρ−1

S2
h−2
m (v)

K∑
i=1

σ2
im (pivi − ϕi) , ∀m ∈ A, (16)

where ϕi is the ith element of ~ϕ in (15).

Please refer to Appendix A for the proof of the above two lemmas.

For convenience, define p̄A (Σ, ρ,p) ,
∑

m∈A p̄m (Σ, ρ,p). Using the above two lemmas, we can

prove the following theorem which gives an asymptotic equivalence of Problem (7).



Theorem 1 (Asymptotic equivalence of Problem (7)): Let A∗, ρ∗,p∗ denote an optimal solution of

the following optimization problem

Ī∗ , max
A,ρ>0,p≥0

Ī (A, ρ,p) ,
K∑
k=1

wklog (1 + γ̄k (Σ, ρ,p)) (17)

s.t. p̄m (Σ, ρ,p) ≤ p̄m, ∀m ∈ A, p̄A (Σ, ρ,p) ≤ PT , (18)

where γ̄k (Σ, ρ,p) and p̄m (Σ, ρ,p) are defined in (11) and (16) respectively. As K,S →∞ with the

ratio β = K/S fixed, A∗, ρ∗,p∗ converges almost surely to the optimal solution of Problem (7), and

Ī∗ converges to the optimal value of Problem (7).

The above theorem implies that the solution of the complicated problem in (7) can be approximated

by the solution of Problem (17), and the approximation is asymptotically accurate as K,S →∞. Fig.

6 shows that the approximation is very good even for a finite number of transmit antennas and users.

IV. OPTIMIZATION SOLUTION FOR PROBLEM (17)

In this section, we shall tackle the remaining challenges of solving the optimization problem in

(17). We first decompose the complex problems into simpler subproblems, and then propose efficient

algorithms for solving the subproblems.

A. Problem Decomposition

Using primal decomposition, problem (16) can be decomposed into the following 3 subproblems:

Subproblem 1: Optimization of p under fixed A and ρ, which can be formulated as

P1 (A, ρ) : max
p≥0
Ī (A, ρ,p) , s.t. (18) is satisfied. (19)

Subproblem 2: Optimization of ρ under fixed A, which can be formulated as

P2 (A) : max
ρ>0
Ī (A, ρ,p∗ (A, ρ)) , s.t. (18) is satisfied, (20)

where p∗ (A, ρ) is the optimal solution of (19).

Subproblem 3: Optimization of A.

P3 : max
A
Ī (A, ρ∗ (A) ,p∗ (A, ρ∗ (A))) , s.t.A ⊆ {1, ...,M} , and |A| = S, (21)

where ρ∗ (A) is the optimal solution of subproblem 2.

Subproblem 1 and 2 are in general non-convex and it is difficult to obtain the optimal solution.

In Section IV-B, we propose Algorithm S1 which converges to a stationary point for Subproblem 1.

In Section IV-C, a bisection method is used to solve Subproblem 2. In Section IV-D, we propose an



efficient algorithm for Subproblem 3. For some special cases discussed in Section V, the proposed

algorithms are asymptotically optimal.

B. Algorithm S1 for Solving Subproblem 1

Subproblem 1 in (19) can be rewritten as a weighted sum-rate maximization problem under linear

constraints for K-user interference channel as follows. First, rewrite the objective Ī (A, ρ,p) as

Ī (A, ρ,p) =

K∑
k=1

wklog

1 + gkkpk/

1 +

K∑
l 6=k

gklpl

 ,

gkk ,
ξ2
kk

(1 + ξkk)
2 , ∀k, gkl ,

−θkl
S (1 + ξkl)

2 (1 + ξkk)
2 , ∀k 6= l.

Recall the definitions of v, hm (v) , m ∈ A, ∆ and C in Lemma 2. Define a K × S matrix R̂ with

the element at the kth row and the jth column given by

R̂kj =
1

S2
ρ−1σ2

kAjh
−2
Aj (v) ,

and define R̄ as a K ×K matrix with each element given by

R̄kk =
1

S

∑
m∈A

1 +
1

S

K∑
i 6=l

σ2
imvi

σ2
lmvl/h

2
m (v)

 , ∀k,
R̄kl = − 1

S

∑
m∈A

[
1

S
σ2
lmvlσ

2
kmvk/h

2
m (v)

]
, ∀k 6= l.

Let V = diag (v1, ..., vK). Then the per antenna power constraint in (18) can be rewritten as R̃p ≤

[p̄A1
, ..., p̄AS ]T , where R̃ , R̂T

[
V − (ρIK + ∆−C)−1 R̄

]
∈ RS×K . The sum power constraint in

(18) can be rewritten as 1T R̃p ≤ p̄A. Finally, the overall constraint in (18) can be expressed in a compact

form as Rp ≤ p̄, p ≥ 0, where R ,
[

IS , 1
]T

R̃ ∈ R(S+1)×K , and p̄ = [p̄A1
, ..., p̄AS , p̄A]T .

The Lagrange function of Subproblem 1 is given by

L
(
~λ,p

)
= Ī (A, ρ,p) + ~λT (p̄−Rp) , p ≥ 0,

where ~λ ∈ R(S+1)×1
+ is the Lagrange multipliers. It is well known that Problem (19) is usually a non-

convex problem with non-zero duality gap. Hence, the standard Lagrange dual method (LDM) [16]

cannot be used to solve this problem. We proposed a local LDM to solve Problem (19) as follows.

Algorithm S1 (for solving Subproblem 1):

Initialization: Choose proper initial ~λ,p.

Step 1: For fixed ~λ, search for a stationary point p̃
(
~λ
)

of

max
p

L
(
~λ,p

)
, s.t. p ≥ 0, (22)



using Algorithm I described later starting from the latest p.

Step 2: Update ~λ as

~λ =
[
~λ− τ

(
p̄−Rp̃

(
~λ
))]+

, (23)

where τ > 0 is a small step size.

Return to Step 1 until convergence.

In the following, we will propose an efficient inner-loop algorithm to solve Problem (22) based

on the interference pricing method [17], which strikes a balance between maximizing each user’s

own objective and minimizing interference by introducing interference prices in each user’s objective

function. Specifically, the interference price for user k is given by [17]

πk =

K∑
l 6=k

wlglk
gllpl

Ωl (Ωl + gllpl)
, (24)

where

Ωl = 1 +

K∑
i 6=l

glipi, (25)

is the interference-plus-noise power of user l. Given fixed interference prices and powers for the other

users, pk is updated by maximizing the following objective function

max
p

wklog

(
1 +

gkkpk

1 +
∑K

l 6=k gklpl

)
− ~λT rkpk − πkpk, s.t. p ≥ 0, (26)

where rk is the kth column of R. Here, we present an algorithm with sequential power updates to solve

the inner loop problem in (22).

Algorithm I (for solving inner-loop Problem (22)):

Initialization: Choose proper initial p.

While not converge do

For k = 1 to K

Calculate πk in (24) and Ωk in (25) using current power allocation p.

Given πk and current power allocation p, update pk by solving problem (26) as

pk =

[
wk

πk + ~λT rk
− Ωk
gkk

]+
.

End

End

Theorem 2 (Convergence of Alg. I): Algorithm I converges to a stationary point of the inner-loop

Problem in (22).

The proof can be established using the same approach as in Appendix A of [17].



Theorem 3 (Convergence of Alg. S1): Let p̃
(
~λ
)

denote the stationary point of Problem (22) found

by Algorithm I for fixed ~λ. Assume that p̃
(
~λ
)

satisfies the following condition over the trajectory of

~λ generated by Algorithm S1:

lim sup
‖4~λ‖→0, ~λ+4~λ≥0

∥∥∥p̃(~λ+4~λ
)
− p̃

(
λ̃
)∥∥∥∥∥∥4~λ∥∥∥ ≤ B, (27)

where B > 0 is some constant. Then Algorithm S1 converges to a stationary point of P1 (A, ρ).

The proof is given in Appendix B.

C. Bisection Algorithm for Subproblem 2

One of the main challenges for solving Subproblem 2 is that the calculation of the objective function

Ī (A, ρ,p∗ (A, ρ)) requires solving the optimal solution p∗ (A, ρ) of Subproblem 1 which is a non-

convex problem. In this section, we propose a bisection algorithm with Algorithm S1 as a subroutine

to find a good solution for Subproblem 2. This algorithm is also shown to be asymptotically optimal at

high SNR under some specific topology in Section V. The algorithm relies on the following theorem.

Theorem 4 (Stationary point of an equivalent problem of P2 (A)): Consider the following joint op-

timization problem under fixed A:

P2a (A) : max
ρ>0,p≥0

Ī (A, ρ,p) , s.t. (18) is satisfied. (28)

Them the followings are true:

1) Let ρ∗,p∗ denote the optimal solution of P2a (A). Then ρ∗ must be an optimal solution of P2 (A),

and p∗ must be an optimal solution of P1 (A, ρ∗).

2) Let p̃ (A, ρ) denote the stationary point of P1 (A, ρ) found by Algorithm S1. Define a function

Î (A, ρ) , Ī (A, ρ, p̃ (A, ρ)) . (29)

Assume that Î (A, ρ) is differentiable over ρ and let ρ̃ (A) denote a solution of

∂Î (A, ρ)

∂ρ
= 0. (30)

Then ρ̃ (A) , p̃ (A, ρ̃ (A)) must be a stationary point of P2a (A).

Proof: The first result is obvious. The second result can be proved using the facts that p̃ (A, ρ̃ (A))

satisfies the KKT condition of P1 (A, ρ̃ (A)) and ρ̃ (A) is a solution of (30). Details are omitted due

to page limit.

The above theorem implies that we can find a good solution for Subproblem 2 by solving Equation

(30) using the following bisection algorithm.



Algorithm S2 (Bisection search for solving Subproblem 2):

Initialization: Choose proper ρa, ρb such that 0 < ρa < ρb and ∂Î(A,ρ)
∂ρa

> 0, ∂Î(A,ρ)∂ρb
< 0.

Step 1: Let ρ = (ρa + ρb) /2. If ∂Î(A,ρ)
∂ρ ≤ 0, let ρb = ρ. Otherwise, let ρa = ρ.

Return to Step 1 until ρb − ρa is small enough.

The main challenge in implementing Algorithm S2 is to calculate the derivative ∂Î(A,ρ)
∂ρ without an

analytical expression for Î (A, ρ). In the following, we show how to calculate ∂Î(A,ρ)
∂ρ from the output

of Algorithm S1: p̃ (A, ρ) and λ̃, where λ̃ ∈ R(S+1)×1
+ is the Lagrange multipliers corresponding to

p̃ (A, ρ).

By Theorem 3, p̃ (A, ρ) satisfies the KKT conditions of P1 (A, ρ), which can be expressed as

∇pĪ (A, ρ, p̃ (A, ρ))−RT λ̃+ ν̃ = 0; (31)

diag (p̄) λ̃− diag
(
λ̃
)

Rp̃ (A, ρ) = 0;

diag (ν̃) p̃ (A, ρ) = 0;

where ν̃ ∈ RK+ is the Lagrange multipliers associated with the positive constraint p ≥ 0. Note that λ̃

can be obtained by Algorithm S1 and ν̃ = RT λ̃−∇pĪ (A, ρ, p̃ (A, ρ)), where ∇pĪ (A, ρ, p̃ (A, ρ)) =[
∂Ī
∂p1

, ..., ∂Ī
∂pK

]
and

∂Ī
∂pk

= wkgkk/
(

Ω̃k + gkkp̃k (A, ρ)
)
− πk,

where Ω̃k is the interference-plus-noise power in (25) calculated from p̃ (A, ρ). Assuming that ∂p̃(A,ρ)
∂ρ ,

∂λ̃
∂ρ and ∂ν̃

∂ρ exits and taking partial derivative of the equations in (31) with respect to ρ, we obtain a

linear equation with ∂p̃(A,ρ)
∂ρ , ∂λ̃∂ρ and ∂ν̃

∂ρ as the variables. Then we can calculate ∂p̃(A,ρ)
∂ρ by solving this

linear equation. Finally, the derivative ∂Î(A,ρ)
∂ρ can be calculated as

∂Î (A, ρ)

∂ρ
=

∑K
l=1

(
p̃l (A, ρ) ∂gkl∂ρ + gkl

∂p̃l(A,ρ)
∂ρ

)
gkkp̃k (A, ρ) + Ω̃k

−

∑K
l 6=k

(
p̃l (A, ρ) ∂gkl∂ρ + gkl

∂p̃l(A,ρ)
∂ρ

)
Ω̃k

. (32)

The detailed calculations and expressions for ∂p̃(A,ρ)
∂ρ , ∂gkl∂ρ ’s and ∂Î(A,ρ)

∂ρ can be found in Appendix C.

D. Algorithm S3 for Solving Subproblem 3

Subproblem 3 is a combinatorial problem and optimal solution requires complex brute-force exhaus-

tive search, which is undesirable. In this section, we shall propose a low complexity algorithm for P3.

The proposed solution is also asymptotically optimal for large M as shown in Corollary 1.

A simple traditional antenna selection baseline algorithm is for each user to associate with the

strongest base stations (antennas) and this simple algorithm has been adopted in 3G and LTE systems.
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Figure 2. An example that strong cross link causes large interference
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Figure 3. An example that strong cross links provide cooperative gain

We first illustrate the deficiency of this baseline algorithm using two simple numerical examples. In

both examples, we assume S = 2 distributed antennas are selected to serve K = 2 users.

Example 1 (Strong cross-link causes low SINR)): Fig. 2 illustrates the path loss configuration of a

distributed MIMO network. According to the baseline algorithm, the selected antennas will be A =

{2, 3}. Yet, this is obviously not a good choice because antenna 2 causes strong interference to user 2

before pre-coding. Although the interference can be suppressed using RCI pre-coding, the overall SINR

is still lower because the cross link from A3 to U1 is week and the joint transmission gain using RCI

is very limited. A better choice will be A = {1, 3}.

Example 2 (Strong cross-link provides cooperative gain): Fig. 3 illustrates the path loss configura-

tion. According to the baseline algorithm, the selected antennas will be A = {1, 3}. However, a better

performance can be achieved by letting A = {1, 2} due to cooperative transmission.

As illustrated from Example 1 and 2, it is important to incorporate both the cross link and direct link

in computing the antenna selection metric for distributed MIMO networks. If there is an antenna with

strong cross links / direct links with several users, then it may or may not be good antenna because

it can contribute to both cooperative gain or interference. There is no simple rule to identify good

antennas but this insight is helpful to design a reasonable antenna selection algorithm.



Based on the above insight, we propose an efficient algorithm S3 for P3. It contains 4 steps. In step

1, the algorithm selects the antennas which has a direct link with a single user. Such antenna provides

a direct link for a single user without causing strong interference to others1. In step 2, the algorithm

selects the antennas which has strong cross link / direct link with several users. Such antennas have

the potential to provide large cooperative gain. In this step, the “bad” antennas which cause strong

interference may also be selected. However, they will be identified and deleted in step 4. In step 3,

the algorithm selects the antennas which has a strong cross link with a single user (the weight of the

user is also considered in the selection). Such antenna provides an (additional) strong channel for a

single user without causing strong interference to others. In step 4, a greedy search is performed to

replace the “bad” antennas with the “good” antennas chosen from a candidate antenna set Γj . In the

jth search, we switch the jth selected antenna Aj with each antenna m ∈ Γj and calculate the weighted

sum-rate. If the weighted sum-rate is increased, we update A as Aj = m. The candidate antenna set

Γj is carefully chosen to reduce the number of weighted sum-rate calculations as well as maintain a

good performance. Fig. 4 illustrates the detailed steps of Algorithm S3.

V. STRUCTURAL SOLUTION FOR SOME SPECIAL CASES

In this section, we focus on deriving structural properties of the optimal solutions under several

special cases so as to obtain some design insights.

A. Large MIMO Network with Collocated Antennas

We first study the case when the antennas are collocated at the base station. In this case, it is

reasonable to assume that all antennas experience the same large scale fading and thus σ2
km = σ2

k1, k =

1, ...,K, m = 1, ...,M . Under this assumption, any subset A of S antennas is optimal for the antenna

selection problem since all antennas are statistically equivalent. Hence, we focus on the structural

properties of p∗ and ρ∗.

We first obtain simpler expressions for asymptotic SINR and transmit power for P1 (A, ρ) and P2 (A).

Theorem 5 (Asymptotic SINR and transmit power for collocated antennas): For a given (A, ρ,p), if

σ2
km = σ2

k1, k = 1, ...,K, m = 1, ...,M , then the followings are true:

1In the rest of the paper, the phrase “an antenna causes interference to a user” refers to the case when an antenna causes

strong interference to a user before pre-coding and the joint transmission using RCI does not provide much gain due to some

other week cross links as shown in Example 1.



Initialization: Let A = Φ, where Φ denote the void set.

Step 1 (Select antennas with a direct link and no cross link):

For k = 1 to K, if |Km̃k
| = 1, let A = A ∪ m̃k. If |A| = S, goto step 4.

Step 2 (Select antennas with multiple strong links):

Let Ḡm = |Km|B +
∑K

k=1 σ
2
km, where B > max

1≤m≤M

∑K
k=1 σ

2
km is a large enough constant.

Let m∗ = argmax
m∈Ā

Ḡm

While |Km∗ | ≥ 2 and |A| < S

Let A = A ∪m∗ and m∗ = argmax
m∈Ā

Ḡm.

End

If |A| = S, goto step 4.

Step 3 (Select antennas with a single strong link):

Let k̃m = argmax
k

σ2
km and Im = wk̃m log

(
1 + σ2

k̃mm

)
.

While |A| < S

Let m∗ = argmax
m∈Ā

Im and A = A ∪m∗.

End

Step 4 (Greedy search for replacing "bad" antennas with "good" ones):

For j = 1 to S

Let A−j = A/Aj . Let n∗ = argmax
m∈Ā∩{m:|Km|=1}

Im and Γaj = Ā ∩ {m : |Km| ≥ 2}.

If In∗ ≥ IAj or
∣∣KAj ∣∣ > 1, let Γj = Γaj ∪ n∗; otherwise, let Γj = Γaj .

Let m∗ = argmax
m∈Γj

ĨA−j∪m.

If ĨA−j∪m∗ > ĨA, let Aj = m∗.

End

Figure 4. Algorithm S3 for solving Subproblem 3. The following is a list of the notations used in the algorithm. Let

m̃k = argmaxmσ
2
km, k = 1, ...,K. Define ḡdk = σ2

km̃k
. For k = 1, ...,K, and m = 1, ...,M , let Gkm = 1, if σ2

km ≥ ḡdk/4,

and otherwise, let Gkm = 0. Define Km = {k : Gkm > 1} , m = 1, ...,M . Let ĨA , Ī (A, ρ̃ (A) , p̃ (A, ρ̃ (A))) denote the

weighted sum-rate under A. For any set of antennas A ⊆ {1, ...,M}, let Ā denote the relative complement of A.

1) The system of equation:

u =
1

ρ+ 1
S

∑K
i=1

σ2
i1

1+σ2
i1u

, (33)

admits a unique solution u in R++.



2) Define

F12 =
1

S

K∑
i=1

σ2
i1(

1 + σ2
i1u
)2 , F̄12 (p) =

1

S

K∑
i=1

piσ
2
i1(

1 + σ2
i1u
)2 .

As K,S → ∞ with the ratio β = K/S fixed, γk (Σ, ρ,p) in (2) and pm (Σ, ρ,p) in (3)

respectively converge to the following deterministic values

γ̄k (Σ, ρ,P) =
pkσ

4
k1u

2 (ρ+ F12)

F̄12 (p)σ2
k1u+

(
1 + σ2

k1u
)2

(ρ+ F12)
,

p̄m (Σ, ρ,p) =
F̄12 (p)u

S (ρ+ F12)
, ∀m ∈ A. (34)

The proof is similar to the proof in Appendix A.

Using Theorem 5, P1 (A, ρ) can be reformulated into a simpler form as follows. First, according to

(34), all antennas always have the same transmit power. Furthermore, it can be verified that either the

per antenna power constraint or the sum power constraint must be achieved with equality at the optimal

solution. Combining these facts and the asymptotic expressions in Theorem 5, subproblem P1 (A, ρ)

can be equivalent to the following optimization problem

max
p≥0

K∑
k=1

wklog

(
1 +

pkσ
4
k1u

2

σ2
k1P

′

T +
(
1 + σ2

k1u
)2
)
, s.t.

F̄12 (p)u

(ρ+ F12)
≤ P ′T , (35)

where P
′

T = min
(
PT , min

m∈A
Sp̄m

)
.

1) Water-filling Structure of the Optimal Power Allocation: For fixed A, ρ, the optimal power

allocation p∗ (A, ρ) = [p∗1 (A, ρ) , ..., p∗K (A, ρ)] is given by:

p∗k (A, ρ) =

(
wkS

(
1 + σ2

k1u
)2

(ρ+ F12)

λσ2
k1u

−
σ2
k1P

′

T +
(
1 + σ2

k1u
)2

σ4
k1u

2

)+

, (36)

where λ is chosen such that F̄12 (p∗ (A, ρ))u/ (ρ+ F12) = P
′

T .

2) Properties of the optimal ρ in High SNR Regime: The following theorem summarizes the structural

properties of the optimal solution ρ∗ for P2 (A).

Theorem 6 (Properties of ρ∗ at high SNR): For fixed K and S, the following are true:

1) ρ∗ = O
(

1
P
′
T

)
for large P

′

T .

2) There exists a small enough constant ρ
′

max > 0 such that the objective of P2 (A): Ī (A, ρ,p∗ (A, ρ)),

is a concave function of ρ for all ρ < ρ
′

max.

The proof is given in Appendix D. Theorem 6 implies that with sufficiently small initial ρb > ρa > 0,

Algorithm S2 will converge to the optimal ρ∗ at high SNR.



B. Large MIMO Network with Collocated Users

In this case, all users experience the same large scale fading: σ2
km = σ2

1m, k = 1, ...,K, m = 1, ...,M .

As a result, the antenna selection problem has a trivial solution: A∗ =
{
m : σ2

1m ≥ σ2
1Smax

}
, where

σ2
1Smax is the Sth largest σ2

1m’s and we shall focus on p∗ and ρ∗ for subproblems P1 (A, ρ) and P2 (A).

The following theorem summarizes the asymptotic SINR and sum power in this case.

Theorem 7 (Asymptotic SINR and sum power for collocated users): For a given (A, ρ,p), if σ2
km =

σ2
1m, k = 1, ...,K, m = 1, ...,M , then the followings are true:

1) The system of equation:

ξ =
1

S

∑
m∈A

(1 + ξ)σ2
1m

ρ+ ρξ + βσ2
1m

,

admits a unique solution ξ in R++.

2) Define

E12 =
1

S

∑
m∈A

σ2
1m(

ρ+ ρξ + βσ2
1m

)2 , E22 =
1

S

∑
m∈A

σ4
1m(

ρ+ ρξ + βσ2
1m

)2 .
As K,S → ∞ with the ratio β = K/S fixed, γk (Σ, ρ,p) in (2) and

∑S
m=1 pm (Σ, ρ,p) in (6)

respectively converge to the following deterministic values

γ̄k (Σ, ρ,P) =
pkξ

2

βE22

1−βE22

1
K

∑K
l=1 pl + (1 + ξ)2

, (37)

p̄A (Σ, ρ,P) =
βE12

1− βE22

1

K

K∑
l=1

pl, (38)

Remark 1: Similarly, we can obtain simpler expression for per antenna power pm (Σ, ρ,p) in (5).

Using these simpler asymptotic expressions, P1 (A, ρ) can be reformulated into a simpler form, and

the optimal power allocation is also given by a simple water-filling solution. The details are omitted

due to limited space.

Similarly, using Theorem 7 and assuming we have sum power constraint p̄A (Σ, ρ,p) ≤ PT only,

subproblem P1 (A, ρ) is equivalent to the following optimization problem:

max
p≥0

K∑
k=1

wklog
(

1 +
ξ2pk

PTE22/E12 + (1 + ξ)2

)
, s.t.

βE12

1− βE22

1

K

K∑
l=1

pl ≤ PT .

For fixed A, ρ, the optimal power allocation p∗ (A, ρ) is given by water-filling solution as

p∗k (A, ρ) =

(
wkS (1− βE22)

λE12
− PTE22/E12 + (1 + ξ)2

ξ2

)+

,

where λ is chosen such that βE12

1−βE22

1
K

∑K
l=1 p

∗
l (A, ρ) = PT . On the other hand, the optimal ρ∗ for

P2 (A) is given by:

ρ∗ =
β

PT
,
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Figure 5. Illustration of asymptotic decoupling effect in a very large distributed MIMO network

where β = K/S. The proof can be extended from the proof in Appendix B of [10] and is omitted due

to page limit.

C. Very Large Distributed MIMO Network

In this section, we analyze the asymptotic performance for very large distributed MIMO networks

(i.e., M is very large). To simplify the analysis, we make the following assumptions.

Assumption 3 (Assumptions on the Very Large Distributed MIMO Network): The coverage area is a

square with side length Rc. There are M = N2 distributed antennas evenly distributed in the square grid

for some integer N . The locations of the K users are randomly generated from a uniformly distribution

within the square. Assume that the large scale fading is purely caused by path loss. The pass loss model

is given by σ2
km = G0r

−ζ
km, where G0 > 0 is a constant, rkm is the distance between the mth antenna

and kth user, ζ is the pass loss factor.

Let m̃k = argmax
m

σ2
km. For each user, define ḡdk = σ2

km̃k
as the direct-link gain, and ḡck = max

l 6=k
σ2
km̃l

as the maximum cross-link gain. Define the ratio η = min
k
ḡdk/ḡ

c
k, which measures the coupling between

the distributed antennas and the users. We have the following theorem



Theorem 8 (Asymptotic Decoupling and Capacity Scaling): For any η0 > 0, we have

Pr (η > η0) ≥ 1−K

[
1−

(
1− π

(
η

1/ζ
0 + 1

)2
/ (2M)

)K−1
]
. (39)

Furthermore, for any ε > 0, the maximum achievable weighted sum-rate Cw almost surely satisfies

O
(
K
(
ζ
2 − ε

)
logM

)
≤ Cw ≤ O

(
K
(
ζ
2 + ε

)
logM

)
as M →∞ with K,S fixed.

Please refer to Appendix E for the proof.

Remark 2 (Interpretation of Asymptotic Decoupling): For fixed β = K/S and reasonably large M/K,

there is a high probability that η is large. This means that there is a large chance that the topology of

the selected active antennas and the K users have strong direct-link and weak cross-links as illustrated

in Fig. 5. Intuitively, this means that for large M , there is a high chance that each of the K users can

find a set of nearby transmit antennas which are relatively far from other users. Due to this decoupling

effect in large distributed MIMO system, simplified physical layer processing (such as Matched-Filter

pre-coder [2] for each user using the selected antennas nearby) can also achieve good performance.

Corollary 1 (Asymptotic Optimality of Algorithm S3): For reasonably large M/K, Algorithm S3 is

asymptotically optimal.

The proof is given in Appendix F.

VI. NUMERICAL RESULTS

In this section, simulations are used to verify the accuracy of the asymptotic expressions in the

paper, and the performance of the proposed algorithms. Consider a Cloud RAN serving K = 8 users

lying inside a square with an area of 2Km × 2Km. Assume that the antennas are evenly distributed

in the square. Assume the same pass loss model as in Assumption 3, where the pass loss factor is

set as ζ = 2.5. In the simulation figures, we plot the average weighted sum-rate2 versus sum power

constraint PT in (5) for various cases. In all simulations, the per antenna power constraint is set as

p̄m = 5dB, m = 1, ...,K. From the first user to the eighth user, the weights increase linearly from

0.0625 to 0.1875. The locations of users are randomly generated from a uniform distribution except

for Fig. 7.

A. Asymptotic Expressions and Power Allocation Gain

In Fig. 6, we verify the accuracy of the asymptotic expressions and the performance gain due to

power allocation. We plot both the asymptotic and simulated weighted sum-rates averaged over a single

2The weighted sum-rate shown in the simulations are enlarged by K times since the weights are normalized.



0 5 10 15 20 25
12

14

16

18

20

22

24

26

28

30

32

P
T
 (dB)

W
ei

gh
te

d 
su

m
−

ra
te

 (
B

its
/ C

ha
nn

el
 u

se
)

 

 

asymptotic with power allocation
simulated with power allocation
asymptotic without power allocation
simulated without power allocation

Figure 6. Comparison of asymptotic and simulated weighted sum-rates with and without power allocation

large fading block. The number of antennas S is fixed as 16. The performance without power allocation,

i.e., P = cI in (1), is also given for comparison. It can be seen that the asymptotic approximation is

close to the simulated value. When power allocation is considered and optimized, a higher weighted

sum-rate can be achieved compared to the case when only the regularization factor ρ is optimized. Note

that as PT increases, the weighted sum-rate get saturated due to per antenna power constraint.

B. Capacity Gain of the Proposed Scheme w.r.t. Baseline

In Fig. 7 and 8, we compare the performance of the proposed algorithm with the traditional antenna

selection baseline algorithm described in Section IV-D. The power allocation and ρ are optimized in

all cases. There are a total number of M = 25 antennas. We plot the weighted sum-rates averaged

over different realizations of user locations for S = 8 and 16 respectively3. In Fig. 7, we consider

strong cross link case, where the user locations are randomly generated but with the restriction that the

distance between each user and the nearest antenna must be larger than a threshold. In this case, it can

be seen that the proposed scheme achieves significant performance gain compared with the baseline.

In Fig. 8, we consider normal case where the users are uniformly distributed. Similar results as in Fig.

7 can be observed, although the performance gain is smaller compared to the strong cross link case.

3The baseline algorithm can be extended to select S ≤ n × K antennas for some integer n by applying the baseline

algorithm for several rounds and deleting the selected antennas from the entire antenna set after each round.
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Figure 7. Comparison of proposed antenna selection scheme and baseline for strong cross-link case
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Figure 8. Comparison of proposed antenna selection scheme and baseline for uniformly distributed users
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Figure 9. Comparison of asymptotic and simulated weighted sum-rates for different choices of transmit antennas

C. Comparison with Performance Upper and Lower Bounds

In Fig. 9, we compare the proposed antenna selection scheme with some upper and lower bounds.

There are a total number of M = 49 antennas and S = 16 of them are selected for transmission.

The performance of the following cases are compared. Case 1: All the 49 distributed antennas are

used for transmission, which provides an performance upper bound. Case 2: All the 49 antennas are

collocated at the BS and are used for transmission. Case 3: There are a total number of 16 antennas

evenly distributed in the square and all the 16 antennas are used for transmission, which provides a

performance lower bound. We plot the weighted sum-rates averaged over different realizations of user

locations. The following advantages of the proposed antenna selection scheme can be observed. 1) It

achieves a weighted sum-rate close to the upper bound in Case 1, and higher than Case 2, while the

pilot training overhead is lower. 2) The performance is much better than Case 3 due to large antenna

gain. Note that as PT increases, the weighted sum-rate of the proposed scheme and Case 3 get saturated

earlier because in this two cases, the number of active antennas is smaller and the actual total transmit

power is smaller when PT is large.

VII. CONCLUSION

We consider downlink antenna selection problem in a large distributed MIMO network with M � 1

geographically distributed antennas. Assume that RCI pre-coding is employed. The objective is to max-



imize the average weighted sum-rate under per antenna and sum power constraint by joint optimization

of antenna selection, regularization factor, and power allocation based on the knowledge of large scale

fading factors. The problem is a mixed combinatorial and non-convex problem. The objective and

constraints have no closed-form expressions. We first derive asymptotically accurate expressions for

average weighted sum-rate and transmit power. Then the joint optimization problem is decomposed

into simpler subproblems and efficient algorithms are proposed to solve them. For the special cases of

collocated antennas or collocated users, we obtain structural solution. We also show that the capacity

of a very large distributed MIMO network scales according to O
(
K ζ

2 logM
)

, where ζ is the pass loss

factor. Simulations show that the proposed antenna selection scheme provides a very good trade-off

between performance and CSI acquisition overhead.

APPENDIX

A. Proof of Lemma 1 and Lemma 2

a) Almost sure convergence of γ̄k (Σ, ρ,P): We first prove the almost sure convergence of Ak

and Bk, then the almost sure convergence of γ̄k (Σ, ρ,P) follows immediately.

Ak can be rewritten as Ak = σ2
kh̃k

(
Ĥ†kĤk + ρIS

)−1
h̃†k, where σ2

k = diag
(
σ2
kA1

, ...,σ2
kAS
)
, and

the elements of h̃k are i.i.d. complex random variables with zero mean, unit variance. Then it follows

from [18, Corrolary 1] that

Ak −
1

S
Tr
(
σ2
k

(
Ĥ†kĤk + ρIS

)−1
)

a.s−→ 0. (40)

Applying [19, Lemma 2.4] to the trace term in (40), we have Ak
a.s−→ ξkk, where ξkk is defined in (8).

Following a similar analysis as the above and by denoting Qk = Ĥ†kĤk + ρIS , we have

Bk −
1

S
Tr
(
σ2
kQ
−1
k Ĥ†kPkĤkQ

−1
k

)
a.s−→ 0. (41)

Using matrix inverse lemma, the trace term in (41) can be rewritten as

1

S

K∑
l 6=k

pl(
1 + ĥlQ

−1
kl ĥ†l

)2 ĥlQ
−1
kl σ

2
kQ
−1
kl ĥ†l ,

where Qkl = Ĥ†klĤkl + ρIS and Ĥkl is the matrix of Ĥ where the kth and lth rows are removed.

Applying [18, Corrolary 1], [20, Lemma 2.1] and [19, Lemma 2.4] one by one, we have

ĥlQ
−1
kl ĥ†l

a.s−→ 1

S
Tr
(
σ2
lQ
−1
kl

)
−→ 1

S
Tr
(
σ2
lQ
−1
k

) a.s−→ ξkl. (42)



By [18, Corrolary 1], we have

ĥlQ
−1
kl σ

2
kQ
−1
kl ĥ†l

a.s−→ 1

S
Tr
(
σ2
lQ
−1
kl σ

2
kQ
−1
kl

)
= − 1

S

∂

∂z
Tr
(
σ2
l

(
Ĥ†klĤkl + ρIS + zσ2

k

)−1
)∣∣∣∣

z=0

−→ − 1

S

∂

∂z
Tr
(
σ2
l

(
Ĥ†kĤk + ρIS + zσ2

k

)−1
)∣∣∣∣

z=0

. (43)

where the last line follows from [20, Lemma 2.1]. Applying [19, Lemma 2.4] to the last trace term in

(43), and calculate the partial derivative over z, it can be shown that

ĥlQ
−1
kl σ

2
kQ
−1
kl ĥ†l

a.s−→ θkl, (44)

where θkl is defined in (10). Combining the above results, we have Bk
a.s−→ − 1

S

∑K
l 6=k

[
plθkl/ (1 + ξkl)

2
]
.

b) Almost sure convergence of pm (Σ, ρ,p): Without loss of generality, we assume m = Aj . By

denoting Q̃j =
(
Ĥc
jĤ

c†
j + ρIK

)−1
, where Ĥc

j is the matrix of Ĥ where the jth column is removed,

and applying matrix inverse lemma to (3), we have

pAj (Σ, ρ,p) =
1

S
ĝ†jQ̃

−1
j PQ̃−1

j ĝj

(
1 + ĝ†jQ̃

−1
j ĝj

)−2
.

Following similar analysis for the term ĥlQ
−1
kl σ

2
kQ
−1
kl ĥ†l in (41), we have

ĝ†jQ̃
−1
j PQ̃−1

j ĝj
a.s−→ ρ−1

K

K∑
i=1

σ2
iAj (pivi − ϕi) ,

where vi is defined in (12) and ϕi is defined in (15). Following similar analysis for the term ĥlQ
−1
kl ĥ†l

in (42), we have

ĝ†jQ̃
−1
j ĝj

a.s−→ 1

S

K∑
i=1

σ2
iAjvi.

Combining the above results, we show that pm (Σ, ρ,p)
a.s−→ p̄m (Σ, ρ,p) in (16).

Finally, IK−Dk is invertible because the spectral radius of Dk is less than 1 as K,S →∞ with the

ratio β = K/S fixed. And (ρIK + ∆−C)−1 is invertible because it is a diagonally dominant matrix.

This completes the proof of Lemma 1 and Lemma 2.

B. Proof of Theorem 3

Under condition (27), it can be shown that∇~λL
(
~λ, p̃

(
~λ
))

exists and is given by∇~λL
(
~λ, p̃

(
~λ
))

=

p̄−Rp̃. Then (23) is a gradient projection update for solving the problem min
~λ
L
(
~λ, p̃

(
~λ
))

, s.t.~λ ≥ 0,

and thus Algorithm S1 must converge to a stationary point λ̃ of this problem [21]. Finally, it can be

verified that p̃
(
λ̃
)

is a stationary point of P1 (A, ρ). The details are skipped due to page limit.



C. Calculation of the Derivative ∂Î(A,ρ)
∂ρ

For convenience, define two (S +K + 1)-dimensional vectors

p̄ext =

 p̄

0

 , λ̃ext =

 λ̃

−ν̃

 .
Define a (S +K + 1)×K matrix Rext ,

[
RT ,−IK

]T . Define a vector e ∈ RK whose kth element is

ek =

K∑
l=1

wlglk∑K
i=1 p̃i (A, ρ) ∂gli∂ρ(

gllp̃l (A, ρ) + Ω̃l

)2 −
wl

∂glk
∂ρ

gllp̃l (A, ρ) + Ω̃l


+

K∑
l 6=k

(
wl

∂glk
∂ρ

Ω̃l

−
wlglk

∑K
i 6=l p̃i (A, ρ) ∂gli∂ρ

Ω̃2
l

)
.

Define a K ×K matrix G whose element at the kth row and lth column is

Gkl =

K∑
l=1

−wlglkgln(
1 +

∑K
i=1 glip̃i (A, ρ)

)2 +
∑
l 6=k,n

wlglkgln(
1 +

∑K
i 6=l glip̃i (A, ρ)

)2 .

Finally, define a (2K + S + 1)× (2K + S + 1) matrix

Gext =

 G; −RT
ext

diag
(
λ̃ext

)
Rext; diag (Rextp̃ (A, ρ)− p̄ext)

 .
Taking partial derivative of the equations in (31) with respect to ρ, we obtain the following linear

equations

Gext

 ∂p̃(A,ρ)
∂ρ

∂λ̃ext
∂ρ

 =


(
∂R
∂ρ

)T
λ̃+ e

−diag
(
λ̃ext

)(
∂Rext
∂ρ

)T
p̃ (A, ρ)

 .
Then we can obtain ∂p̃(A,ρ)

∂ρ by solving the above linear equations.

Define J1 =
{
j : p̄Aj (Σ, ρ, p̃ (A, ρ)) < p̄Aj

}
and K = {k : p̃k (A, ρ) > 0}. If p̄A (Σ, ρ, p̃ (A, ρ)) <

PT , let J = J1∪{S + 1}, otherwise, let J = J1. Note that we have λ̃j = 0, ∀j ∈ J and ν̃k = 0, ∀k ∈

K according to the KKT conditions. It can be verified that ∂λ̃j
∂ρ = 0, ∀j ∈ J and ∂ν̃k

∂ρ = 0, ∀k ∈ K.

Therefore, we can delete these |J |+ |K| variables and the corresponding linear equations whose index

i satisfies i −K ∈ J or i − S −K − 1 ∈ K. The remaining 2K + S + 1 − |J | − |K| variables can

be determined by the remaining linear equations. After obtaining ∂p̃(A,ρ)
∂ρ , the derivative ∂Î(A,ρ)

∂ρ can be

calculated using (32).

To complete the calculation of ∂Î(A,ρ)
∂ρ , we still need to obtain ∂gkl

∂ρ , ∀k, l, and ∂R
∂ρ . The following

Lemma are useful and can be proved by a direct calculation.



Lemma 3 (Derivatives of the intermediate variables): For the intermediate variables ~θk, v, ∆ and

C defined in Lemma 1 and Lemma 2, the partial derivatives of them with respective to ρ are given

below.
∂~θk
∂ρ

= (IK −Dk)
−1

(
∂dk
∂ρ

+
∂Dk

∂ρ
~θ

)
, ∀k, (45)

where ∂dk
∂ρ is given by

∂dkl
∂ρ

=
2

S

∑
m∈A

σ2
kmσ

2
lm

1− 1

S

K∑
i 6=k

σ2
imφki

(1 + ξki)
2

 /f3
m

(
~ξk

) , ∀l,
and ∂Dk

∂ρ is given by

∂Dk,ln

∂ρ
=

1

S2

∑
m∈A

 2σ2
lmσ

2
nm

(1 + ξkn)2

 1

S

K∑
i 6=k

σ2
im

1 + ξki

(
φki

1 + ξki
− φkn

1 + ξkn

)
− 1− ρφkn

1 + ξkn

 /f3
m

(
~ξk

) .
∂Cln
∂ρ

=
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nm

∂vl
∂ρ

/h2
m (v)− 2

S
σ2
lmσ

2
nmvl

1

S

K∑
i=1

σ2
im

∂vi
∂ρ

/h3
m (v)

]
, ∀l, n, (46)

∂4l

∂ρ
= − 1

S

∑
m∈A

[
σ2
lm

1

S

K∑
i=1

σ2
im

∂vi
∂ρ

/h2
m (v)

]
, ∀l, (47)

∂vl
∂ρ

= − (ρIK + ∆−C)−1 v, ∀l. (48)

Using Lemma 3, ∂gkl
∂ρ , ∀k, l, and ∂R

∂ρ can be obtained by a direct calculation as follows.

∂gkk
∂ρ

=
2ξkk

∂ξkk
∂ρ

(1 + ξkk)
3 , ∀k,

∂gkl
∂ρ

= −
∂θkl
∂ρ

S (1 + ξkl)
2 (1 + ξkk)

2 +
2θkl

[
∂ξkl
∂ρ (1 + ξkk) + ∂ξkk

∂ρ (1 + ξkl)
]

S (1 + ξkl)
3 (1 + ξkk)

3 , ∀k 6= l,

where ∂ξkk
∂ρ = φkk, ∀k is defined in (9), ~θk = [θk1, ..., θkK ]T , ∀k is defined in (10) and ∂~θk

∂ρ is given in

(45). To calculate ∂R
∂ρ , we first obtain ∂R̂

∂ρ as

∂R̂kj
∂ρ

= −
σ2
kAjρ

−1

S2

[
ρ−1/h2

Aj (v) +
2

S

K∑
i=1

σ2
iAj

∂vi
∂ρ

/h3
Aj (v)

]
, ∀k, j.

where ∂vi
∂ρ , ∀i is given in (48). Then we obtain ∂R̄

∂ρ as

∂R̄kk
∂ρ

=
1

S

∑
m∈A

σ2
km

∂vk
∂ρ

+ σ2
km

1

S

K∑
i 6=k

σ2
im

(
vk
∂vi
∂ρ

+ vi
∂vk
∂ρ

) /h2
m (v)

−

2σ2
kmvk

1 +
1

S

K∑
i 6=k

σ2
imvi

 1

S

K∑
i=1

σ2
im

∂vi
∂ρ

 /h3
m (v)

 ,∀k,
∂R̄kl
∂ρ

= − 1

S

∑
m∈A

[
σ2
kmσ

2
lm

1

S

(
vl
∂vk
∂ρ

+ vk
∂vl
∂ρ

)
/h2

m (v)− 2

S
σ2
kmσ

2
lmvkvl

1

S

K∑
i=1

σ2
im

∂vi
∂ρ

/h3
m (v)

]
,∀k 6= l.



Finally, ∂R
∂ρ =

[
IS , 1

]T
∂R̃
∂ρ and ∂R̃

∂ρ is given by

∂R̃

∂ρ
=

(
∂R̂

∂ρ

)T (
V − (ρIK + ∆−C)−1 R̄

)
+ R̂T

(
∂V

∂ρ
− (ρIK + ∆−C)−1 ∂R̄

∂ρ

)
+R̂T

(
IK +

∂∆

∂ρ
− ∂C

∂ρ

)
(ρIK + ∆−C)−2 R̄,

where ∂C
∂ρ and ∂∆

∂ρ are given in (46) and (47) respectively, and ∂V
∂ρ = diag

[
∂v1
∂ρ , ...,

∂vK
∂ρ

]T
.

D. Proof of Theorem 6

When P
′

T is large enough, all users will be allocated with positive power. In this case, the SINR of

user k under power allocation in (36) is given by

γ̂k (ρ,p∗ (A, ρ)) =
Swk

(
1 + σ2

k1u
)2
σ2
k1

(
2ρuP

′

T + (β − 1)P
′

T + 1
S

∑K
l=1

1
σ2
l1

)
σ2
k1P

′

T +
(
1 + σ2

k1u
)2 − 1, (49)

and the objective of P2 (A) is given by Ī (A, ρ,p∗ (A, ρ)) =
∑K

k=1wklog (1 + γ̂k (ρ,p∗ (A, ρ))). For

any k, it can be shown that the solution ρ̃k of ∂
∂ρ γ̂k (ρ,p∗ (A, ρ)) = 0 must satisfy ρ̃k = O

(
1
P
′
T

)
. Since

the optimal regularization factor ρ∗ must satisfy min
k
ρ̃k ≤ ρ∗ ≤ max

k
ρ̃k, we have ρ∗ = O

(
1
P
′
T

)
. To prove

the second result, it can be verified that ∂2

∂2ρ γ̂k (ρ,p∗ (A, ρ)) < 0 and thus γ̂k (ρ,p∗ (A, ρ)) is concave

when ρ is small enough. Since Ī (A, ρ,p∗ (A, ρ)) is a concave increasing function of γ̂k (ρ,p∗ (A, ρ)),

Ī (A, ρ,p∗ (A, ρ)) must be a concave function of ρ [16].

E. Proof of Theorem 8

We first derive the lower bound for the probability that the minimum distance rmin between any two

users is larger than a certain value r0: Pr (rmin ≥ r0). Let dukl denote the distance between user k and

user l. We have

Pr (rmin ≥ r0) = 1− Pr
(

min
l 6=k

dukl ≤ r0, ∃k ∈ {1, ...,K}
)

≥ 1−
K∑
k=1

Pr
(

min
l 6=k

dukl ≤ r0

)
= 1−KPr

(
min
l 6=1

du1l ≤ r0

)
= 1−K

[
1− (Pr (du12 ≥ r0))K−1

]
≥ 1−K

[
1−

(
1− πr2

0

R2
c

)K−1
]
,



where the second inequality follows from the union bound and the last inequality holds because

Pr (du12 ≥ r0) ≤ 1− πr20
R2
c

.

Then we use the path loss model to transfer the probability Pr (rmin ≥ r0) to the probability Pr (η > η0)

in (39). Note that for any k, we have min
m
rkm ≤

√
2Rc

2
√
M

, and max
l
rkm̃l

≥ rmin −
√

2Rc
2
√
M

. Hence η ≥(
rmin/

(√
2Rc

2
√
M

)
− 1
)ζ

and

Pr (η > η0) ≥ Pr

((
rmin/

(√
2Rc

2
√
M

)
− 1

)ζ
> η0

)

= Pr
(
rmin >

√
2Rc

2
√
M

(
η

1/ζ
0 + 1

))
≥ 1−K

[
1−

(
1− π

(
η

1/ζ
0 + 1

)2
/ (2M)

)K−1
]
.

Finally, we prove the capacity scaling law by deriving an upper and a lower bound for the achievable

weightd sum-rate. The following lemma is useful for deriving the upper bound.

Lemma 4: For any ε > 0, as M →∞ with K,S fixed, we have

Pr
(

min
k,m

rkm ≤M−
1

2
−ε
)

=
πM−2ε

R2
c

→ 0,

and thus

Pr
(
ḡdk > G0M

ζ

2
+ε
)
→ 0.

Let PUT = max
(
PT ,max

m∈A
Sp̄m

)
and let XS denote a random variable with χ2 (2S) distribution.

Assuming that each user is severed by S antennas without interference from other users, we obtain an

upper bound for average weightd sum-rate as follows:

Cw ≤ KE
[
log
(

1 + PUT ḡ
d
kXS

)]
≤ Klog

(
1 + PUT ḡ

d
kE [XS ]

)
. (50)

Combining (50) with Lemma 4, we prove that Cw ≤ O
(
K
(
ζ
2 + ε

)
logM

)
holds almost surely as

M →∞ with K,S fixed.

Furthermore, it follows from the lower bound provided in Appendix F that Cw ≥ O
(
K
(
ζ
2 − ε

)
logM

)
.

This completes the proof of Theorem 8.

F. Proof of Corollary 1

Due to (39) in Theorem 8, the step 1 in Algorithm S3 will almost surely select a set of antennas

A, |A| = K such that each user has strong direct-link with one of the selected K antennas and weak



cross-links with other selected antennas for large M/K. Assume that each selected antenna only severs

the nearest user, and assume equal power allocation for each user, i.e., pk = min
(
PT /K, min

m∈A
p̄m

)
, k =

1, ...,K. Let Xm denote a random variable with χ2 (2m) distribution. Let η0 = M
ζ

2
−ε1 in (39). Then

using (39) and the fact that ḡdk ≥ G0

(√
2Rc

2
√
M

)−ζ
, we can show that as M → ∞ with K,S fixed, the

average weighted sum-rate IA is almost surely lower bounded by

IA
a.s
≥ KE

log

1 +
p1G0

(√
2Rc

2
√
M

)−ζ
X1

1 + p1M
− ζ

2
+ε1G0

(√
2Rc

2
√
M

)−ζ
XK−1


 , (51)

where X1 and XK−1 are independent. Choose B1 > 0 and B2 > 0 such that Pr (X1 ≥ B1) Pr (XK−1 ≤ B2) ≥

1− ε2. Then as M →∞ with K,S fixed, it follows from (51) that

IA
a.s
≥ K (1− ε2) log

1 +
p1G0

(√
2Rc

2
√
M

)−ζ
B1

1 + p1M
− ζ

2
+ε1G0

(√
2Rc

2
√
M

)−ζ
B2


= O

(
K (1− ε2)

(
ζ

2
− ε1

)
logM

)
.

Choose ε1, ε2 such that ε1 + ζ
2ε2 − ε1ε2 = ε. Then we have IA

a.s
≥ O

(
K
(
ζ
2 − ε

)
logM

)
as M → ∞

with K,S fixed. The rest steps in Algorithm S3 only increase the weighted sum-rate by a constant gain.

This completes the proof.
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