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Introduction and Motivation

é Why delay performance is important?

& “WHAT??!! He is stuck in the
airll 1S*(&#%*!(1”

é “You must be kidding me!

Buffering at such an important
moment!!1??”

Fact I:
Real-life applications are delay-
sensitive




Keep track of a game

Communities Setup

Fact ll:
Different users and
applications have
heterogeneous delay

requirements Keep talking to
— some friends

Skype
MSN Messenger
Ica
SIP
Google Talk
Twitter (Chat only)

Yahoo (Chat only)




Introduction and Motivations

é Delay-Optimal Cross-Layer Design?

Q) Can’t we just focus on boosting the %% |
PHY performance using advanced signal
processing techniques (e.g. MIMO)? If

the PHY is improved, the delay of the

N applications will be improved as well. So, \
why bother to have “cross-layer” design?
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Related Works
é SDMA Precoder Design for PHY Performance

[Sampath’01], [Scaglione’99],[Palomar’03], etc. Remark:

— Dirty Paper Coding (DPC) for MIMO Broadcast Channel Only adapt based

—  Zero-Forcing Precoding for SDMA on CSIT, ignoring

— assuming knowledge of perfect CSIT. queue states and
optimize PHY layer

[Lau’04], [Heath’04], [Love’05] etc. performance

—  Precoder design for SDMA with limited feedback. (throughput) only

— Robust Precoder design for SDMA with outdated CSIT.

Conclusion: Very important to make use of both (channel state info) CSI and
(queue state info) QSI for delay sensitive applications



Introduction and Motivations

é Challenges to incorporate QSI and CSI in adaptation

Challenge 1: Requires both Information theory (modeling of the PHY p
dynamics) & Queueing theory (modeling of the delay/buffer dynamics)

-

Challenge 2: Brute-force approach cannot lead to any viable solution

Information Theory \_lul_t Queueing Theory

Claude Shannon

When Shannon meets Kleinrock... 7



Existing Approaches to deal with Delay-Optimal Control

é Various approaches dealing with delay problems

Approach | : Stability Region and Lynapnov Drift [Berry’02], [Neely’07], etc.

* Discuss stability region of point-to-point SISO and multiuser SISO. /
 Also considered asymptotically delay-optimal control policy based on
“Lynapnov Drift”

* The authors obtained interesting tradeoff results as well as insight into the
structure of the optimal control policy at large delay regime.

Buffer Partitioning
Remark: v -V

/ > <€
This approach allows simple /

control policy with design _—
insights but the control w.|II be S<1/v 1 ST Byffer
good only for asymptotically v

. State s
large delay regime.

To regulate the buffer state

towards 1/v :



Related Works

é  Various approaches dealing with delay problems
Approach Il [Yeh’01PhD], [Yeh’03ISIT]

- Symmetric and homogeneous users in multi-access fading channels -~
- Using stochastic majorization theory, the authors showed that the
longest queue highest possible rate (LQHPR) policy is delay-optimal

A

% A (Tlla TQ)
higher rate
for user 1
>

T2
Capacity region
Vy
\( \(
Longer queue
Q2 Q

1 for user 1

9



Related Works

é Various approaches dealing with delay problems

Approach lll : [Wu’03], [Hui’07], [Tang’07], etc.

To convert the delay constraint into average rate constraint using tail
probability at large delay regime (large derivation theory) and solve
the optimization problem using information theoretical formulation
based on the rate constraint.

Remark:
While this approach allows potentially simple solution, the control
policy will be a function of CSIT only and such control will be good

only for large delay regime.

Note:
In general, the delay-optimal power and precoder adaptation should

be a function of both the CSI and the QSI.



Related Works

é Various approaches dealing with delay problems

Approach IV : [Bertsekas’87]
The problem of finding the optimal control policy (to minimize delay) is
cast into a Markov Decision Problem (MDP) or a stochastic control

problem.

Remark:

— Unfortunately, it is well-known that there is no easy solution to
MDP in general.

— Brute-force value iteration and policy iteration are very complex
and time-consuming.

— The curse of dimensionality!!



Related Works

é Technical Challenges to be Solved

Challenge 1.
A systematic approach for low complexity delay-optimal control policy in
general delay regime.

Challenge 2:
Exponential Complexity due to coupling among multiple delay-sensitive
heterogeneous users.

Challenge 3:
Structure of the delay-optimal policy, issue of Limited Buffer Length and
Packet Dropping.

Challenge 4:
Distributive Implementation??



Introduction

& What shall we do?

Consider two examples to illustrate two techniques for the challenging
problem.

Example I) Delay-Optimal Power Control in SDMA Systems via Stochastic
Decomposition.

Example Il) Delay-Optimal OFDMA Resource Control via Stochastic
Learning.




Example |) Delay Optimal Power
Control in SDMA Systems via
Stochastic Decomposition



Introduction
é SDMA System
Fring a
Packets O Y
Ql ul(Q7H) <
G-MAP 5 X O Wireless
Packets Fading
Qo | 12(Q,H) F Channel
WV
:U“L(QvH)
YouTube | 5
Packets = O

QL

\

Queueing State Channel State
Information (QSI)  Information (CSI)

Q={Q1,....Q} HN, xn,




System Model

é Multiuser MIMO Physical Layer Model

A1

H1 (Q7 H)

Py, x1

SDMA
Precoder

\ (o] z

H = {hy, Vk € {1,2..K}}Y;

Mobile 1 |——>

Mobile K I——>




System Model

é SDMA Physical L : |
Equivalent channel for t# Zero-Forcing SDMAw,, = Ay Iy, — H (HHp) ™ H |
)

Z="\_

Yi = /prhpwi Xy + Zi,

System S/

X | Allocati SDMA PHY Layer
Control

Rl (P) = 10g2 (1 —|—p1 h1 W1W1 )hl )

Ric(P) = logy (1 + pic ()hx (wxwH)hE)
Power C /

P = {(p1(x): P (X)) : VX

Data rate (bits per symbol) of the k-th user: |

Ry (P) = log, (14 pr(x)hg(wrwi )hy')

17



System Model

¢ Queue Dynamics & System States

QsIQ = {Q1,Q2}

DMA Powe

MAC State

_ pn1(Q, H
G-MAP . 1(Q. H)
Packets
YouTube __,l 1N
Packets 5 N_2(Q>H)

Allocation

2
AC Layer
SDMA E
PHY Layer ZF Precoding

PHY State

scheduling time slot
& Channel is quasi-static
in a slot
é i.i.d between slots

% Packet Arrivals
PHY Frames ; \

18



System Model

o)
Challenges:
System pi ses . . . . . .
, — Huge dimension of variables involved (policy = set of actions .~
Poisson art o y
over all system state realizations)
Average pa .
— K queues are coupled together = Exponentially Large State
Space
. . — Problem not convex
Optimiza
K
— , k(P
T = mmz Q- () (Total Average Delay of K users)
P 1 /\k.

S.t: pr(x) =0

(L) < eq Yk € {1,2.. K} (Packet Drop Rate Constraint)

K K
Z E, [pr(x)] = ZPk 11.(P) < FPayy (Average Power Constraint)
k=1 k=1




System State Evolution

é& Embedded Markov Chain

é Sample the continuous time random process x(t)at frame

boundaries {0, 7,27,....} , we have an “"embedded discrete

time random process”:Xm = (Hy,, Q) where x,, = x(m7)

Lemma 1) For a given control policy, the embedded random

process Xm = (Hm,Qm)is a Controlled Markov chain with

transition kernel given by:

Pr[Ho i1, Q1 [Xms P(Xm)] = sy Pr(bims1) Pr[Qumt [xXom, p(Xm)]

20



System State Evolution

é  Sketch of Proof

é Given the current state . =(H,,Q..) and the control
action Px(Xm), one of the following events could occur for

user k at the (m+1)-th scheduling slot.

Packet arrival from the data source: Since packet arrival follows Poisson distribution
with mean arrival rate A, the transition probability of the buffer state corresponding to

packet arrival is given by:

Pkgq+1 = Pl‘[Qk.m-+1 =q+ 1|Qk.-m = Q] =1- e_AkT%< L “)

Packet drop due to limited buffer size: Inte r-paCket arrival time >> t

Pr(Packet arrival|Qy. . = L) Pr(Qpn = L] N7 Pr[Qum =L] PO — 1]
Pr(Packet arrival) - AT = Prem =
(3)

MNe =

Since the inter-arrival time of packets is memoryless, the above probabilities in (4) and

(5) (conditioned on Y,,) is independent of the previous system states {\,n—1, Xm—2, - }-

21



System State Evolution

Sketch of Proof

Packet departure from the data buffer: A packet can depart if and only if the required
service time of the remaining packet is no more than one slot duration. Since the packet
length is exponentially distributed with mean packet length N}, the probability for packet

departure at t = (m + 1)7 (conditioned on the system state y,,) is given by:

Pkgq-1 = Pr[Qk.mH =q—1|Qrm = g, X-mapk(Xm)]

. o ‘1, log, (1 + pr(x)hy (wrw ) hi
= b (10g2(1‘|‘p12#k(X)_ st +pk(x%r(wm)lk) ]
N,
= Pr (Tk < ﬂ'k(Xm-)T) =1- e_#k(xmt%)un)'r (6)
N
Mean Time to deliver a
packet >>t

Since the packet length N, is memoryless, the above probability (6) (conditioned on Y,

and action pg(x.m)) is independent of the system state {Xm—1, \m—2, ... }-

As a result of the memoryless property of the packet interrarrival and packet length
distribution as well as (3), the embedded random process \,, = (Q.., H,,) is a discrete

time Markov process. Furthermore, since Ax7 and p;7 are small, the probability of multiple

packet arrivals or packet departures is of the order O[(\,7)?] and hence is negligible. 22




System State Evolution

é Our Transition Probability Kernel:

State transition diagram for K-dimension Markov chain {Qm} with N states each
dimension. K=2 for illustration.

I—AIT—‘Uz(O,N)T

Power Control in PHY =
Controlled Service Rate in

Queues

1= Ayt . "o —HWNT T - (N,NYT
-1 (N,O) ’ —tr (N, N)rz:(( ) AT
)

For unichain control policy, the induced Markov Chain is “aperiodic” and “irreducible”. J




Technical Challenges

é Major Challenges

é 1) Exponentially large Q state (QSlI):
& The total number of states in the joint-queue-state (QSI) = NAL

& Exponentially large = complexity and memory requirement = O(exp[L])!!

é 2) Global Optimal Solution:

& The problem is not convex. How to make sure we have global optimal

solution?

é 3) Asymptotic Analysis:

& Any useful insights can be obtained on the structure of delay-optimal

solution? How to do buffer dimensioning? 04



Problem Decomposition

é Primal Decomposition

& Define auxiliary variables:
P =Py - T (P),
Pma:zﬁn — {?laF'Za ?I\.}

(average transmit power allocated to user k)

& The optimization problem becomes:

— - U, —
Auxmary T* — min E Zk ,k = Q ' Hk(P)
variables > PranP k1 Ak

St pr(x) =0

(L) < eq Yk € {1,2..K}

K
Z Pk S Pa'vg
k=1



Problem Decomposition

é Primal Decomposition
For given Prain, Ur is a function of P only and hence, we have:

K =7 K 77
. Z Uit . Z . Ut
min —Q— = Inin min —
P o )\k Pma.in k pk )\k

A e

pmain )

As a result, we can decompose the problem into one master problem + K subproblems

Problem 1 (Master Problem):
K

. U, (Pr)r
T=pin 2 =5 1o

Average Power
allocation to the K

users

26



Problem Decomposition

é Primal Decomposition

Problem 2 (Sub Problem):

U,(Pr) = minQ - I, (P) (20)
k
(21)
(22)
(23)
Note that giveq Instantaneous power allocation to the \[ves according

k-th user (subject to k-th user average

MR W 3 . Y
to it’s own local power constraint P, )

and QSI only.

Hence, we could wri

27



Solution of the Subproblem

é Transformation of Variables

é The subproblem is not convex w.r.t. the optimization
variables {Pr(Xk)}

é Using birth death dynamics of the problem, the

subproblem is equivalent to:

ZL Hf;q+1 mc.z(ﬁk,z)
q=0 AN —a

— .

Uy = min e

pk,Q ZL H'l=q+]l"'k’z(Pl\'.l)
q=0 Y9

(27)

1
S.t: _ < )3
L Iy Fen(Pren) — 0 (28)

L Iligs m..(ﬁk.x)ﬁ
Zqzo Ai\r—'q kaq

P-TI(Py) = < Py (29)

ZL I_If:q-l-lﬁ;c‘;(ﬁk,l)
9=0 Ap e

PioPrg) = maxBulig(01Qun =0 Py = E[pr(x2)|Qr = g



Solution of the Subproblem

é Transformation of Variables

¢ Consider the following transformation: v, = [Ty ™5, ¢ € {0.1....L}
(One-to-one mapping)

Vie = {tk.0, s ..} < Pk = {Pk.os -, Pr.}
é Transforming from the P domain to the V domain, the

subproblem is equivalent to:

L -
— . Dg1dVkg min Uy
U, = min =2 T
E= v L N Uk, Vi
q=0 Yk,q L L
1 S
S.t. I < €4 S.t. Z qUk,g — Ukz Vg = 0
Zq:O Uk,q g=1 q=0
L Vi g— 1Ak L L L
L p(Reatdey,, v\ .
=1 X g — k,g—1\k
! S —— < P, 11— GdZ Vg = 0, Z F( Z )Vkg — sz Vg =0
g0 Vkg q=0 g=1 k. q=0

29



Solution of the Subproblem

é Global Optimal Solution

é Theorem (Unique optimal solution): The subproblem has a
unique global optimal solution. Furthermore, the following

algorithm can reach the solution in [log,(£)] steps.

——————

Algorithm 1 (Bisection Searching):
« Initialize: Set U, = 0: Uppax = L.

« Repeat:

- Set Uk — —Umi"_;Uma"
— Solve Problem 4 (defined below) using Algorithm 2;

— if the optimal solution of Problem 4 Spin < 0, Upin = Uy else Upax = Uy

o Until Upay — Upin < € where € is the performance error tolerance bound. U, = Uy.




Solution of the Subproblem

é Structure of the Optimal Solution

é Multi-level Power Water-filling: Power Allocation

Water-level adaptive to QSI according to water-filling
w.r.t. CSI of users

¢ The water levels {o;  } can be determined offline based on

long-term statistical information of the data source and
CSI.

é Memory requirement is O(L)



Solution of the Master Problem

\‘/4

Recall that the master problem is to determine the “average
power allocation” to the SDMA users Piain = {P1,..., Pk}

U,.(Py) is a convex function of P, < The master problem

is convex in {P1,..., Px}

Form the Lagrangian function for the master problem

Lemma 4.3 (Derivative of optimal buffer length w.r.t power constraint): Denote the lagrange
multipliers corresponding to the optimal scheme V. = {v} ,} of Problem 4 when Uy = U; as

Bz, Bi,- The derivative of U, (Py) w.r.t. Py in the sub problem is given by (42). Moreover,

% is a non-decreasing function of Py.
k

Uy, _ B

IPy 1 — By — Bra

How to detemine the subgradient?

32



Asymptotic Analysis

é We consider high SNR scenario

Lemma 5.2 (Asymptotic closed-form expression of { a;‘c,q} in terms of ay1): The water-filling

levels under different QSIs is an geometric series:

qg—1
1 | (loe(zw) 1
—_:(I.) —_- — s qe {1’2’.--L}. (45)
g o Nk AN a1 Ny,
Optimal water level under different QSI
0.7 T T T T T T T T
0.65h #  A=0.175, SNR=20dB; T"=2.45 i
+  A=0.175, SNR=23dB; T*=1.71
06l %=0.15, SNR=23dB; T"=1.18 |
0551 L log ( a} ) forms an arithmetic series
_ Theoretical value AT N k,q . .
3 05 e ] — {aj .} forms a geometric series
s _
T 045¢ =47 %
8 .- .-
0.4} sl ¥ e F .
4 o
035} e 2 1
L= e
03%; - 7 b
0-25 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
q

Fig. 3. Relationship of water levels in the proposed multi-level water-filling solution. The y-axis is log of water level and
the x-axis is the QSL. We assume L = 10 and SN R = 10log 10(Py)

00
J9



Asymptotic Analysis

Corollary 5.1 (Performance gain compared to the CSI-only policy): Optimal buffer length
U, achieved by the proposed multilevel water-filling algorithm is

. . .. ) . ) Gllino . . Ak
while that achieved by the traditional CSI-only (sn‘ngle level water-filling) policy 1s/0(logﬁk)_)‘k.

Ak
0(logﬁk)+ loglog P )—/\k

Average delay Under different transmit SNR

Gain due to multi-level water-filling

15 T T T T T T T T
X Baseline1: Equal power allocation
\
\
' ¥
1t \\ Baseline2: CSI-only allocation i
\
S
[+
* :
N N
N
N . +* X Proposed
0.5F N S _
* * <
* _ T ——
e T Ty
0 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

10log10(P) (dB)

Fig. 6. Average delay versus average SNR. The baseline 1 and 2 scheme correspond to equal power scheme and CSI-only
scheme (single-level water-filling) respectively. nT' = 5, K = 4, A\, = 0.09 + 0.01 * k, k € {1,...K}, Maximum buffer

10 log 10(P)
K

L = 10 and maximum packet drop rate ¢4 = 0.01, SNR =

Substantial delay gain vs
CSIT-only scheme




Asymptotic Analysis

é Buffer Length Requirement

log log (Fk,min) X

Corollary 5.2 (Minimum power required due to finite buffer size): Denote Fk,min as the min-

imum power to achieve the packet drop rate constraint € under a maximum buffer size L.

— 108 €4

+ log(\x) + log(N (48)

Minimurn required transmit SNR due to Limited buffer size

T 1,001, 3=0175

L a,=0.01, 3=0.15

d -

o 13,2004, 3=0.15

Theoretical value

g
EREYS
o
8
13 /(’F
-~
+_ -
1.2
11 *
v
| A
-
0 | | | | | | | |
0904 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N

First order guideline on
buffer dimensioning

For small ¢,

loglog SNR,,in] X L

— constant

w

O1



Conclusion

Conclusion 1 (Structure of Delay-Optimal Power Control):
Delay-Optimal Power Allocation — multilevel water-filling: Water-filling
across CSl, water level determined by QSI.

Conclusion 2 (Complexity):
Low complexity O(K) solution via stochastic decomposition and birth-
death queue dynamics

Conclusion 3 (Asymptotic Results):
Gain of multilevel water-filling is loglog SNR.
Buffer Length x log log SNR = constant



Example Il) Delay Optimal Power and
Subband Allocation in OFDMA
Systems via Stochastic Learning



OFDMA System Model

AN

O

&

/

CS| from the
K mobiles

Resource Allocation
Controller

QSl of the K

1

SC alloc. policy QS.

P alloc. policy Q‘P

1

queues Qk |» » « Q2| | Qu
®
2SI I~ O—>m@
A, —
Xy e« O—>nr(Q)




OFDMA PHY Model

é OFDMA Physical Laye

Ao @ Subband Data Rate Rk
Allocation
Q2
: R =" sinl (Xim: Yin|Hin) = Y knlog (1+ prn| Hinl?)
AL A
—>

39




OFDMA Queue Dynamics

é Time domain partitioned into scheduling slots

\V/)
‘7\\

CSI H(t) remains quasi-static within a slot and iid between
slots
Packet arrival A(t) = (Ai(t),...,Ax(t)) where Ak(t) ~ iid

according to a general distribution Pk(A).
Nk(t) denotes the random packet size ~ iid.

Q(t) denotes the number of packets waiting in the buffer
at_the t-th slot.

Qr(t + 1) = min{ [Qx(t) k(t)]+ + Ag(t). No}

Global System State (CSI, QST) Total number of bits
x(t) = (H(t), Q(t)) Transmitted in the t-th slot

40



OFDMA Delay-Optimal Formulation

/ Stationary Power and Subband Allocation Control Policy \

é A mapping Q = (9,,Q;) from the system state x to a power

and subband allocation actions.
Qp(x) = 1Pk, s (X) = {Sk,n}

K N;
ZZE[Pk,n] < P, pra =0, (Power Constraint)

k=1 n=1

K
ZS"*" =1Vn e {1, Nr} (Subband Allocation Constraint)

N Y

41




OFDMA Delay-Optimal Formulation

s

\.

“Positive Weighting Factor”
ﬁ - (ﬂlvﬁQa” : aIBL)

Pareto Optimal delay boundary

\

-

() = Jim = > E[ 3 pin(t)

under a control policy () \

[Qk] VE € {1, K}

: =, [Zpkn] < P

E.  d¢notes expect

/ Problem Formulation

Find the optlmc

\.

o n” \
Per-stage reward

g(x;

(p,s}) me ,Zmn




Optimal Solution

é  Infinite Horizon Average Reward MDP
é Given a stationary control policy 2, the random process

{x(t),9(x(t),2x(t)))} evolves like a Markov Chain with

transition kernel:

Prx(t + 1)[x(t), 2x(?))] = Pr[H(# + 1)] Pr[Q(¢ + 1)|x(?), 2(x(¢))]

é  Solution is given by the "Bellman Equation”

’@ min |g(x',u(x)) + Y PriIx’ utx OV ()|

u(x’ )

/

/. o .
/ Potentlal function” (contribution of the state i to the average reward)

“Optimal Value” 0= Jj =info J§ (Ng + 1)%Equations and
(Ng + 1)% + 1 unknowns




Optimal Solution

é Example of the Solution Structure

é For the special case of exponential packet length N(t) and Poisson

Arrival, the optimal power and subband control are given by:

pk,n(H,Qi) — Sk,n(H,Qi)(N_k

Sk,n(Ha Qz) /
0, otheryfise

( /

ater-level depends on QSI (via potential function)

/ AV(@Q)) = V(@i Qi) — V(@ [QL — 1%+, Qi)

Subband Allocation Metric (depends on both CSI and QSI)

T o EAV(@)) 1+ FAV(Q)) L+
Xin = AV Q) og (1+ [Hen (B2 — i) ) — (B — ) .




Optimal Solution

é How to determine the potential function?
é Brute-Force solution of the Bellman Equation?:

é Too complicated, exponential complexity and memory

requirement
é  Online stochastic learning?

é Iteratively estimate potential function based on

observation - online value iteration

é Due to exponentially large state space, convergence

speed is an issue (not scalable w.r.t. K)

é How to break this "scalability barrier”?

45



Optimal Solution

Definition 3: [Semi-Global Subcarrier Allocation Policy] A semi-global subcarrier allo-
cation policy is defined as QS(H,Q) = {Skn(H,Qr) € {0,1}| Zf;l Skn = 1Vn}. In other
words, the subcarrier allocation s, ,,(H, Q) of the kth user in the nth subcarrier is a function

of the global CSI H and the local QSI @;. only.

é |Theorem: Additive Property of Potential Under "Semi-global
Subband Allocation Policy” V(Q) = S i(Qu)

(O, {{N/k(Qk)}) is the solution of the “per-user Bellman equation”
0 = min G (Qu, ux(Qn)) + M AV (Qr + 1) — T(Qi) TAV(Qy),

Up (Y

Complexity ~ O(K) = Much faster convergence when applying online
Stochastic learning on the “per-user Bellman equation” (Convergence proof skipped)

é | Corollary: The semi-global subband allocation policy is

asymptotically optimal for large K. 16




Numerical Results

Average Delay per user vs SNR

The number of users K = 2, the mean packet size N = 1526 Kbyte/pt,

Average Delay per Queue (packets)

0 5 10 15 20
SNR (dB)

30

Huge gain in delay performance
Compared with conventional
CSIT only schemes and RR

Close-to-optimal performance
even for small # of users




Numerical Results

Average Delay per user vs number of iterations

Number of users K=16, average packet size = 10kbyte
Transmit SNR = 10dB

4 T T ! T T

35 I Sy Y U
0}
"4
8 Y
e 3 R R et .
o) Round Robin
S . .
0] : : ; : :
g 25f A S ;" CSITOnly -~ A )
\q_) . . . . .
- : ; ; : ;
%  2[Rediiced Complexity (per iteration) A o 1
) : ; ; : : -
&)
S AS i e Pt e .
© . Reduced Complexity
e | - -
A e A Y RRIELr _or R P T CEEETTEE .

05— R T —— '

0 20 40 60 80 100 120

Number of lterations (time duration in a communication session)

Fast convergence (“lock-in”) of
the online stochastic learning
algorithm

48



Conclusion

Conclusion 1 (Structure of Delay-Optimal Power Control and Subband

Allocation):
* Power Allocation — multilevel water-filling: Water-filling across CSl, water level

determined by QSI.
* Subband Allocation — choose the user with the largest metric f(QSlI, CSI)

Conclusion 2 (Complexity):
Under “semi-global subband allocation”, we derive a low complexity O(K)

solution via stochastic learning

Conclusion 3 (Asymptotic Results):
Semi-global subband allocation is “asymptotically optima

I”

for large K.
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Thank you!

Questions are Welcomed!

Vincent Lau - eeknlau@ee.ust.hk

http://www.ee.ust.hk/~eeknlau



