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Introduction and Motivation

é Why delay performance is important?

& “WHAT??!! He is stuck in the
airll 1S*(&#%*!(1”

é “You must be kidding me!

Buffering at such an important
moment!!1??”

Fact I:
Real-life applications are delay-
sensitive
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Related Works
é OFDMA Joint Power and Subband Design for PHY

Performance

[Yu’02], [Hoo’04],[Seong’06], etc. Remark:

— Selects the strongest user per subband 4 Only adapt based

— Time-Frequency Water-filling Power Allocation on CSIT, ignoring

— Assuming knowledge of perfect CSIT. SRR SR AN
optimize PHY layer

[Lau’05], [Wong’09], [Brah’07] etc. - performance only

— Robust Power and Subband Control with limited (throughput or PFS)

feedback or outdated CSIT (packet errors).

Conclusion: Very important to make use of both (channel state info) CSI and
(queue state info) QSI for delay sensitive applications



Introduction and Motivations

é Challenges to incorporate QSI and CSI in adaptation

Challenge 1: Requires both Information theory (modeling of the PHY p
dynamics) & Queueing theory (modeling of the delay/buffer dynamics)

-

Challenge 2: Brute-force approach cannot lead to any viable solution

Information Theory \_lul_t Queueing Theory

Claude Shannon

When Shannon meets Kleinrock... 6



Existing Approaches to deal with Delay-Optimal Control

é Various approaches dealing with delay problems

Approach | : Stability Region and Lyapunov Drift [Berry’02], [Neely’07], etc.

* Discuss stability region of point-to-point SISO and multiuser SISO. /
 Also considered asymptotically delay-optimal control policy based on
“Lyapunov Drift”

* The authors obtained interesting tradeoff results as well as insight into the
structure of the optimal control policy at large delay regime.

Buffer Partitioning
Remark: v -V

/ > <€
This approach allows simple /

control policy with design _—
insights but the control w.|II be S<1/v 1 ST Byffer
good only for asymptotically v

. State s
large delay regime.

To regulate the buffer state
towards 1/v :



Related Works

é  Various approaches dealing with delay problems
Approach Il [Yeh’01PhD], [Yeh’03ISIT]

- Symmetric and homogeneous users in multi-access fading channels -~
- Using stochastic majorization theory, the authors showed that the
longest queue highest possible rate (LQHPR) policy is delay-optimal
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Related Works

é Various approaches dealing with delay problems

Approach lll : [Hui’07], [Tang’07], etc.

To convert the delay constraint into average rate constraint using tail
probability at large delay regime (large derivation theory) and solve
the optimization problem using information theoretical formulation
based on the rate constraint.

Remark:

While this approach allows potentially simple solution, the control
policy will be a function of CSIT only and such control will be good
only for large delay regime.

Note:
In general, the delay-optimal power and precoder adaptation should

be a function of both the CSI and the QSI.



Related Works

é Various approaches dealing with delay problems

Approach IV : [Bertsekas’87]
The problem of finding the optimal control policy (to minimize delay) is
casted into a Markov Decision Problem (MDP) or a stochastic control

problem.

Remark:

— Unfortunately, it is well-known that there is no easy solution to
MDPs in general.

— Brute-force value iteration and policy iteration are very complex
and time-consuming.

— The curse of dimensionality!!



Technical Challenges To be Solved

Challenge 1:
A systematic approach for low complexity delay-optimal control policy in
general delay regime.

Challenge 2:
Curse of Dimensionality: Exponential Complexity due to coupling among
multiple delay-sensitive heterogeneous users.

Challenge 3:
Structure of the delay-optimal policy.

Challenge 4:
Distributive Implementation (Function of Local CSI and Local QS|, e.g.
uplink OFDMA)



Example :
Distributive Delay-Optimal Control

for Uplink OFDMA via Localized
Stochastic Learning and Auction Game
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Uplink OFDMA System Model

QS| from the CSI from the
K mobiles K mobiles
Resource
Allocation
- Controller
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OFDMA PHY Model

‘ [‘ | Subcarrier
& Power OFDMA PHY Data Rate R,

Q1 / Allocation

NF NF
Z Sk,nl (Xk,n; Yk,ank,n) = Z Sk,n lOg (]- + pk,n|Hk,n|2)

n=1
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Source Model and System States

e A
- MAC State
(i , asl Q = {Q1,Q:}
S ) ) BN
‘ ME(Q’ ) Power & Cross Layer
Qﬁ SubbandAllocation Controller
(BS)

Packjts |
PHY State

YbuTube
Packets

PHY Layer

Packet Arrivals

PHY Fray

]
........... bbbl bbb lwtime

scheduling time slot
* Channel is quasi-static in a slot 15

6\7‘"\ i.i.d. between slots



OFDMA Queue Dynamics

é Time domain partitioned into scheduling slots

\V/)
‘7\\

CSI H(t) remains quasi-static within a slot and is i.i.d.
between slots
Packet arrival A(t)=(A1(t) ,...,Ak(t)) where Ak (1) i.i.d.

according to a general distribution P(A).
Nk(t) denotes the random packet size, i.i.d.

Qi(t) denotes the number of packets waiting in the k-th
buffer at the t-th slot.

Qr(t + 1) = min{ [Qx(t) k(t)]+ + Ai(t), No}

Global System State (CSI, QST) Total number of bits
x(t) = (H(t), Q(t)) Transmitted in the t-th slot

16



OFDMA Delay-Optimal Formulation

/ Stationary Power and Subband Allocation Control Policy \
é A mapping Q=(£,,Q) from the system state X to a power

and subband allocation actions.

QP(Z) - {pk,n}9 Qs(%) - {Sk,n}
iE[pk’n] <P, Vke{lLK}, p,,20 (Power Constraint)

X (Subband Allocation Constraint)
Y s, =1 Vne{l,N,}
k=1

\ Pr[Qk — NQ] < Pkd Vke {1, K} (Packet Drop Rate Cons’rray
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OFDMA Delay-Optimal Formulation

Definitions: Average Delay, Power and Packet Drop Consfmirﬁ

under a control policy

T
lim > BQu(0)] = Ex, Q41 € (1K)

F.(Q?) = 11_1.1;% [Y})k,n(t)] =E,, [Zpkm] <P, Vke{l K}
T
Pi@ = Jim -%ZE[”Q"“ N NQ]] = Enr, [1[Qk = NQ]] < P Yke{l K}

Little’s Law: average no. of packets=average arrival rate *average delay
\ the average delay (in terms of seconds) oc the average queue length /




“Positive Weighting Factor” FOr'mUIG'hOn
'3 = ('}1, cee (3[\)
Pareto Optimal delay boundary d(x, {p, s}) — Zk G5 Q.
Pr _Amal control |

K T
1
70
min J3 E Gp T () = 11_1‘13&— E IE[))]
k=1 =
K subject to  the power and packet drop rate constraints /

Solution: Markov Decision Problem (MDP)

Key Idea: Divide-and-Conquer

To break a large problem (optimization over the whole policy space)
into smaller sub problems (optimization over a control action at a stage).



Overview of Markov Decision Problem Formulation

é Specification of an Infinite Horizon Markov Decision Problem

— Decisions are made at points of time — decision epochs

System state and Control Action Space:

— At the t-th decision epoch, the system occupies a state 5S¢

— The controller observes the current state and applies an action A

Per-stage Reward & Transition Probability

— By choosing action A: the system receives a reward (S, Ay)

— The system state at the next epoch is determined by a transition
probability kernel Pr(Siy1 | St, As)

Stationary Control Policy:

— The set of actions for all system state realizations A; = w(S%)

The Optimization Problem:
— Average Reward

— Optimal Policy

e—

R

1
= max lim —E
T T—>ooT

A

> R(Si, Ay)

t=1




Overview of Markov Decision Problem Formulation

é&  Solution of an Markov Decision Problem

Key Criterion: Bellman’s Equation
Under some technical conditions, the optimal value of the problem is given
by the solution of the Bellman’s Equation.

/

é Optimal average reward
R =4
é Optimal policy (Fixed Point Problem on Functional Space)

‘ i

n* = arg 11_1\1}.\: < r(S;, A;) 4 Z Pr(S5;19;, A;)V(S;) ¢

\ y,



Constrained Markov Decision Problem Formulation

-

CMDP Formulation: Find the optimal control poricy=z

d(x;{p,s}) = 35 B Qx

AaT minimizes

T
ngn Ty = ZxﬁTk = lm;o%;E)))]

subject to the power and packet drop rate constraints

-
p

/
g

Lagrangian approach to the Constrained MDP:

o

T
n}%nLg('y) —:’1111;0%; (x (%), Qx(t ]
J

/

(v, x:QUx)) = 2k (BeQr + 7>, P — Br) + 15 (1{Qr = Ng] — FY))
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Optimal Solution

é  Infinite Horizon Average Reward MDP

é Given a stationary control policy 2,
{x(t),9(x(t),2x(t)))} evolves like a Markov Chain

with transition kernel:

Prx(t + 1)[x(t), 2x(?))] = Pr[H(# + 1)] Pr[Q(¢ + 1)|x(?), 2(x(¢))]

é  Solution is given by the "Bellman Equation”

! V0= min Jo0c' utx') + 2 Prbe’ix’ u(x )V ()

u(x’ )

// Potentlal function” (contribution of the state i to the average reward)

“Optimal Value” 6 = J; = infq Jj (Ng + 1)%Equations and
unknowns




Optimal Solution - Online Learning

é How to determine the potential function ?
é° Brute-Force solution of the Bellman Equation ? (Value Iteration):

é Too complicated, exponential complexity and memory requirement

é  Online stochastic learning !

é Iteratively estimate potential function based on real time

observation of CSI and QSI - online value iteration

é Distributive Solution:
Per-user Potential and LMs Initialization

2

Online Policy Improvement Based on Per-subband Auction D

Online Per-user Potential and LMs Update [Local CSI, Local QSI]

Termination




Decentralized Solution (I)

é  Online Per-user Primal-Dual Potential Learning Algorithm via

Stochastic Approximation

\ ﬂ"f(@i)

—= ,l—f—
= F(, [

+ (g (v few ()
A K I

ZPA — Px))

+ ViF(Qr(l + 1))

if Q) # Qi(l)

(1+1)-th slot

New Observation at
the beginning of the

'/ Remark (Co

Deterministic N
CSl coherence tim

Zel—oo e >0,¢f — 0, Zel =00,€¢ >0,¢] =0

l

\_

are updated simultaneously.

/Bo'rh the per-user potential and 2 LMs  ps evolves in the same

etter solution (no

\

)
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Decentralized Solution (IT)

é  Per-stage auction with K bidders (MSs) and one auctioneer
(BS)
é Low complexity Scalarized Per-Subband Auction

¢ Bidding: Each user submits a bid X,
. ,: 1, if k=k' and Xj., >0
Subband allocation: s (H..Q) = {

0, otherwise k' = argmaxy Xy,

1 )+
|Hk.n|2

ky, = arg maxg.ps Xin,

é
é  Power allocation: pin(H, Q) = spn(H,. Q)
& Ck,n — 'S‘k}u'nXk;';,nl{k =

Charqing:

Water-level depends on QSI (via potentlal function)

[VHQD = V(@1 Q1 Q) V(@@ -1 Q) |
Xl - o)

IVE \ T =R, / T
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Decentralized Solution

-

~

Theorem (Convergence of online per-user learning) Under

some mild conditions, the distributive learning converges

>/ Remark (Comparison to conventional stochastic learning)

Conventional SL: (1) for unconstrained MDP only or LM for CMDP are
determined offline by simulation; (2) designed for centralized solution with
control action determined entirely from the potential update 2>
Convergence Proof based on standard “contraction Mapping” and Fixed-
Point Theorem argument.

Proposed SL: (1) simultaneous update of LM and the potential function;
(2) control action is determined by all the users’ potential via per-stage
auction = per-user potential update is NOT a contraction mapping &
standard proof does not apply.

\_ Bellman equation.




Numerical Results

Average Delay per User (packets)

10
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Average Delay per user vs SNR

The number of users ' = 2, the buffer size Ng = 10, the mean packet

size¢ N = 305.2 Kbyte/pck, the average arrival rate A\ = 20 pck/s

Round Robin (Baseline 3

.................................................................
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.............. d

< ° é)nly (Baseline 2)

M-LWDF (Baseline 1)

Centralized

5 10 1
SNR (dB)

Huge gain in delay performance
compared with Modified-
Largest Weighted Delay First
(M-LWDF) , which is the queue
length weighted throughput
maximization.

Close-to-optimal performance
even for small number of users:s




Average Delay per User (packets)

Numerical Results

Average Delay per user vs No. of users
The buffer size Ng = 10, the mean packet size N = 78.125 Kbyte/pck

the average arrival rate Ax = 20 pck/s, the queue weight 3x =1 at a transmit SNR= 10dB.

Round Robin (Baseline 3): /& TN T R A

........................................

..................................................

10 .
. = +
R s . R T - 4| The distributive solution has
: : : , huge gain in delay performance
8N CSIT Onily (Bassline 2) g W\ "7 T RT I 7| compared with 3 Baselines.

Number of Users
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Numerical Results

Illustration of convergence property:
Potential function vs. the scheduling slot index (K=10)

Average Delay
Distributive: 5.8769
M-LWDF: 9.1432
CSIT Only: 9.8131
Round Robin: 9.8709

Average Delay
Distributive: 5.3874
M-LWDF: 9.1432
CSIT Only: 9.8131
Round Robin: 9.8709
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Conclusion

Distributive Implementation via Decentralized Stochastic Learning and
Auction Game

Online Per-user Learning:
Simultaneous update of LMs and Potentials.
Almost sure convergence

Optimal Strategy for the Auction Game:

Delay-Optimal Power Control: Multi-Level Water-Filling
(QSI-> water level; CSI-> instantaneous allocation)

Delay-Optimal Subband Allocation: User selection based on (QSI,CSI)

Asymptotically Global Optimal for large K (
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Thank you!

Questions are Welcomed!

Vincent Lau - eeknlau@ee.ust.hk

http://www.ee.ust.hk/~eeknlau



